题目内容

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T f(x)成立.

(1)函数f(x)= x 是否属于集合M?说明理由;

(2)设函数f(x)=axa>0,且a≠1)的图象与y=x的图象有公共点,证明: f(x)=ax∈M;

(3)若函数f(x)=sinkx∈M ,求实数k的取值范围.

(1)f(x)=(2)证明略(3)实数k的取值范围是{k|k= mπ, m∈Z}


解析:

【解题思路】函数f(x)是否属于集合M,要看f(x)是否满足集合M的“定义”,

[解](1)对于非零常数T,f(x+T)=x+T, Tf(x)=Tx. 因为对任意x∈R,x+T= Tx不能恒成立,所以f(x)=

(2)因为函数f(x)=axa>0且a≠1)的图象与函数y=x的图象有公共点,

所以方程组:有解,消去y得ax=x,

显然x=0不是方程ax=x的解,所以存在非零常数T,使aT=T.

于是对于f(x)=ax 故f(x)=ax∈M.

(3)当k=0时,f(x)=0,显然f(x)=0∈M.

当k≠0时,因为f(x)=sinkx∈M,所以存在非零常数T,对任意x∈R,有

f(x+T)=T f(x)成立,即sin(kx+kT)=Tsinkx .

因为k≠0,且x∈R,所以kx∈R,kx+kT∈R,

于是sinkx ∈[-1,1],sin(kx+kT) ∈[-1,1],

故要使sin(kx+kT)=Tsinkx .成立,

只有T=,当T=1时,sin(kx+k)=sinkx 成立,则k=2mπ, m∈Z .

当T=-1时,sin(kxk)=-sinkx 成立,

即sin(kxk+π)= sinkx 成立,

则-k+π=2mπ, m∈Z ,即k=-2(m-1) π, m∈Z .

实数k的取值范围是{k|k= mπ, m∈Z}

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网