题目内容
设an=
,求证:当正整数n≥2时,an+1<an.
n |
k=1 |
1 |
k(n+1-k) |
分析:先对数列的通项化简,再作差,证明其大于0,即可证得结论.
解答:证明:由于
=
(
+
),因此
an=
=
(
+
)=
(1+
+
+
+…+
+1)=
(1+
+…+
)=
,
于是,对任意的正整数n≥2,有
(an-an+1)=
-
=(
-
)
-
=
(
-1)>0,即an+1<an.
1 |
k(n+1-k) |
1 |
n+1 |
1 |
k |
1 |
n+1-k |
an=
n |
k=1 |
1 |
k(n+1-k) |
n |
k=1 |
1 |
n+1 |
1 |
k |
1 |
n+1-k |
1 |
n+1 |
1 |
n |
1 |
2 |
1 |
n-1 |
1 |
n |
2 |
n+1 |
1 |
2 |
1 |
n |
2 |
n+1 |
n |
k=1 |
1 |
k |
于是,对任意的正整数n≥2,有
1 |
2 |
1 |
n+1 |
n |
k=1 |
1 |
k |
1 |
n+2 |
n+1 |
k=1 |
1 |
k |
=(
1 |
n+1 |
1 |
n+2 |
n |
k=1 |
1 |
k |
1 |
(n+1)(n+2) |
1 |
(n+1)(n+2) |
n |
k=1 |
1 |
k |
点评:本题考查数列与不等式的综合,考查学生分析解决问题的能力,对数列的通项化简是关键.
练习册系列答案
相关题目