题目内容
设Sn为数列{an}的前n项和,若
(n∈N+)是非零常数,则称该数列为“和等比数列”,若数列{Cn}是首项为2,公差为d(d≠0)的等差数列,且数列{Cn}是“和等比数列”,则d=________.
4
分析:由题意设数列{Cn}的前n项和为Tn,可得
=
=k,对于n∈N*都成立,化简得,(k-4)dn+(k-2)(4-d)=0,由题意可得4-d=0,解之即可.
解答:由题意设数列{Cn}的前n项和为Tn,
则Tn=2n+
,T2n=4n+
,
因为数列{Cn}是“和等比数列”,
所以
=
=
=k,对于n∈N*都成立,
化简得,(k-4)dn+(k-2)(4-d)=0,
因为d≠0,故只需4-d=0,解得d=4
故答案为:4
点评:本题考查等差数列与等比数列的综合应用,涉及新定义,属基础题.
分析:由题意设数列{Cn}的前n项和为Tn,可得
![](http://thumb.zyjl.cn/pic5/latex/1322.png)
![](http://thumb.zyjl.cn/pic5/latex/1323.png)
解答:由题意设数列{Cn}的前n项和为Tn,
则Tn=2n+
![](http://thumb.zyjl.cn/pic5/latex/1324.png)
![](http://thumb.zyjl.cn/pic5/latex/1325.png)
因为数列{Cn}是“和等比数列”,
所以
![](http://thumb.zyjl.cn/pic5/latex/1322.png)
![](http://thumb.zyjl.cn/pic5/latex/1326.png)
![](http://thumb.zyjl.cn/pic5/latex/1323.png)
化简得,(k-4)dn+(k-2)(4-d)=0,
因为d≠0,故只需4-d=0,解得d=4
故答案为:4
点评:本题考查等差数列与等比数列的综合应用,涉及新定义,属基础题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目