题目内容

(1)已知0<α<
π
4
,β为f(x)=cos(2x+
π
8
)的最小正周期,
a
=(tan(α+
1
4
β),-1),
b
=(cosα,2),且
a
b
=3.求
cos2α+sin2(α+β)
cosα-sinα
的值.  
(2)如图,平行四边形ABCD中,M、N分别为DC、BC的中点,已知
AM
=
c
AN
=
d
,试用
c
d
表示
AB
AD
分析:(1)先根据β为f(x)=cos(2x+
π
8
)的最小正周期求出β,再结合
a
b
=3求出cosα•tan(α+
1
4
π)=5;最后结合二倍角的正弦以及两角和与差的正切函数对所求问题化简,再把所求cosα•tan(α+
1
4
π)=5代入即可求出答案.
(2)由M、N分别为DC、BC的中点,则
DM
=
1
2
AB
,我们易根据向量加法的三角形法则,用
c
d
表示
AB
AD
解答:解:(1):因为β为f(x)=cos(2x+
π
8
)的最小正周期,故β=π.
a
b
=cosα•tan(α+
1
4
β)-2=3.
故cosα•tan(α+
1
4
π)=5.
由于0<α<
π
4

所以
cos2α+sin2(α+β)
cosα-sinα

=
2cos 2α+sin(2α+2π)
cosα-sinα

=
2cos 2α+2sinαcosα
cosα-sinα

=2cosα•
cosα+sinα
cosα-sinα

=2cosα•
1+tanα
1-tanα

=2cosα•tan(α+
π
4

=2×5=10.                               (6分)
(2)由
DM
=
1
2
AB
BN
=
1
2
AD

C
=
AD
+
DM
=
AD
+
1
2
AB

d
=
AB
 +
BN
=
AB
+
1
2
AD

解得:
AB
=
2
3
(2
d
-
c
),
AC
=
2
3
(2
c
-
d
) …(12分)
点评:本题第二问考查的知识点是向量加减混合运算及其几何意义,利用向量加减法的三角形法则,及数乘向量运算法则,将平面内任一向量分解为用基底向量表示的形式,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网