题目内容
设f(x)=ln(x+1),(x>-1)
(1)讨论函数g(x)=af(x)-
x2(a≥0)的单调性.
(2)求证:(1+
)(1+
)(1+
)…(1+
)<e
(n∈N*)
(1)讨论函数g(x)=af(x)-
1 |
2 |
(2)求证:(1+
1 |
1 |
1 |
2 |
1 |
3 |
1 |
n |
n+2 |
2 |
分析:(1)求导数g′(x)=-
,在定义域内解不等式g′(x)>0,g′(x)<0即可;
(2)原命题等价于证明ln(1+
)+ln(1+
)+ln(1+
)+…+ln(1+
)<
,取a=2,由(1)问知g(x)≤g(1),由此得一不等式,令x=
,得关于n的不等式,结合结论对不等式进行适当放缩求和即可.
x2+x-a |
x+1 |
(2)原命题等价于证明ln(1+
1 |
1 |
1 |
2 |
1 |
3 |
1 |
n |
n+2 |
2 |
1 |
n |
解答:解:(1)g′(x)=-
,令x2+x-a=0,
∵△=1+4a>0,∴g′(x)=0有两根,设为x1与x2且x1<x2,
x1=
,x2=
,
当a≥0时x1≤-1,x2≥0,
∴当a≥0时g(x)在(-1,x2)上递增,在(x2,+∞)递减.
(2)原命题等价于证明ln(1+
)+ln(1+
)+ln(1+
)+…+ln(1+
)<
,
由(1)知2ln(1+x)-
x2≤2ln2-
,∴ln(x+1)≤
x2+(ln2-
),
令x=
,得ln(1+
)≤
•
+ln2-
,
所以ln(1+
)+ln(1+
)+ln(1+
)+…+ln(1+
)≤
(1+
+
+
+…+
)+(ln2-
)n
<
(1+
+
+
+…+
)+(ln2-
)n=
(2-
)+(ln2-
)n<
+(ln2-
)n,
只需证ln2-
<
即可,即ln2<
,
∵ln2=ln
=ln
,
=lne
=ln
=ln
=ln
,
∴ln2<
,∴
+(ln2-
)n<
<
,
∴ln(1+
)+ln(1+
)+ln(1+
)+…+ln(1+
)<
,
∴(1+
)(1+
)(1+
)…(1+
)<e
.
x2+x-a |
x+1 |
∵△=1+4a>0,∴g′(x)=0有两根,设为x1与x2且x1<x2,
x1=
-1-
| ||
2 |
-1+
| ||
2 |
当a≥0时x1≤-1,x2≥0,
∴当a≥0时g(x)在(-1,x2)上递增,在(x2,+∞)递减.
(2)原命题等价于证明ln(1+
1 |
1 |
1 |
2 |
1 |
3 |
1 |
n |
n+2 |
2 |
由(1)知2ln(1+x)-
1 |
2 |
1 |
2 |
1 |
4 |
1 |
4 |
令x=
1 |
n |
1 |
n |
1 |
4 |
1 |
n2 |
1 |
4 |
所以ln(1+
1 |
1 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
4 |
1 |
22 |
1 |
32 |
1 |
42 |
1 |
n2 |
1 |
4 |
<
1 |
4 |
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
(n-1)n |
1 |
4 |
1 |
4 |
1 |
n |
1 |
4 |
1 |
2 |
1 |
4 |
只需证ln2-
1 |
4 |
1 |
2 |
3 |
4 |
∵ln2=ln
4 | 24 |
4 | 16 |
3 |
4 |
3 |
4 |
4 | e3 |
4 | 2.73 |
4 | 19.68 |
∴ln2<
3 |
4 |
1 |
2 |
1 |
4 |
n+1 |
2 |
n+2 |
2 |
∴ln(1+
1 |
1 |
1 |
2 |
1 |
3 |
1 |
n |
n+2 |
2 |
∴(1+
1 |
1 |
1 |
2 |
1 |
3 |
1 |
n |
n+2 |
2 |
点评:本题考查应用导数研究函数单调性及证明不等式问题,考查学生分析问题解决问题的能力.
练习册系列答案
相关题目