题目内容

设f(x)=ln(x+1),(x>-1)
(1)讨论函数g(x)=af(x)-
1
2
x2
(a≥0)的单调性.
(2)求证:(1+
1
1
)(1+
1
2
)(1+
1
3
)…(1+
1
n
)<e
n+2
2
(n∈N*
分析:(1)求导数g(x)=-
x2+x-a
x+1
,在定义域内解不等式g′(x)>0,g′(x)<0即可;
(2)原命题等价于证明ln(1+
1
1
)+ln(1+
1
2
)+ln(1+
1
3
)+…+ln(1+
1
n
)<
n+2
2
,取a=2,由(1)问知g(x)≤g(1),由此得一不等式,令x=
1
n
,得关于n的不等式,结合结论对不等式进行适当放缩求和即可.
解答:解:(1)g(x)=-
x2+x-a
x+1
,令x2+x-a=0,
∵△=1+4a>0,∴g′(x)=0有两根,设为x1与x2且x1<x2
x1=
-1-
1+4a
2
x2=
-1+
1+4a
2

当a≥0时x1≤-1,x2≥0,
∴当a≥0时g(x)在(-1,x2)上递增,在(x2,+∞)递减.
(2)原命题等价于证明ln(1+
1
1
)+ln(1+
1
2
)+ln(1+
1
3
)+…+ln(1+
1
n
)<
n+2
2

由(1)知2ln(1+x)-
1
2
x2≤2ln2-
1
2
,∴ln(x+1)≤
1
4
x2+(ln2-
1
4
)

x=
1
n
,得ln(1+
1
n
)≤
1
4
1
n2
+ln2-
1
4

所以ln(1+
1
1
)+ln(1+
1
2
)+ln(1+
1
3
)+…+ln(1+
1
n
)≤
1
4
(1+
1
22
+
1
32
+
1
42
+…+
1
n2
)+(ln2-
1
4
)n
1
4
(1+
1
1×2
+
1
2×3
+
1
3×4
+…+
1
(n-1)n
)+(ln2-
1
4
)n=
1
4
(2-
1
n
)+(ln2-
1
4
)n<
1
2
+(ln2-
1
4
)n,
只需证ln2-
1
4
1
2
即可,即ln2<
3
4

ln2=ln
424
=ln
416
3
4
=lne
3
4
=ln
4e3
=ln
42.73
=ln
419.68

ln2<
3
4
,∴
1
2
+(ln2-
1
4
)n<
n+1
2
n+2
2

∴ln(1+
1
1
)+ln(1+
1
2
)+ln(1+
1
3
)+…+ln(1+
1
n
)<
n+2
2

(1+
1
1
)(1+
1
2
)(1+
1
3
)…(1+
1
n
)<e
n+2
2
点评:本题考查应用导数研究函数单调性及证明不等式问题,考查学生分析问题解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网