题目内容

14、张老师给出一个函数y=f(x),四个学生甲、乙、丙、丁各指出这个函数的一个性质:
甲:对于x∈R,都有f(1+x)=f(1-x);
乙:在(-∞,0]上是减函数;
丙:在(0,+∞)上是增函数;
丁:f(0)不是函数的最小值.
现已知其中恰有三个说的正确,则这个函数可能是
f(x)=(x-1)2
(只需写出一个这样的函数即可)
分析:先根据其中恰有三个说的正确分析得到只有甲、乙、丁正确,然后根据对称轴为x=1,联想到最基本的二次函数,最后根据性质进行构造一个即可.
解答:解:甲:对于x∈R,都有f(1+x)=f(1-x),说明该函数的对称轴为x=1
乙、丙、丁三个之间不能同时成立,根据乙丙可知f(0)是函数的最小值,与丁矛盾;
则甲肯定正确,丙不正确,
可构造对称轴为1,开口方向向上的二次函数
故答案为:f(x)=(x-1)2
点评:本题主要考查了抽象函数及其应用,以及函数的单调性和对称性等有关基础知识,同时本题也是一个开放题,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网