题目内容
如图所示,△ADP为正三角形,四边形ABCD为正方形,平面PAD⊥平面ABCD、点M为平面ABCD内的一个动点,且满足MP=MC、则点M在正方形ABCD内的轨迹为( )![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222949814008484/SYS201311012229498140084007_ST/images0.png)
A.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222949814008484/SYS201311012229498140084007_ST/images1.png)
B.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222949814008484/SYS201311012229498140084007_ST/images2.png)
C.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222949814008484/SYS201311012229498140084007_ST/images3.png)
D.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222949814008484/SYS201311012229498140084007_ST/images4.png)
【答案】分析:在空间中,过线段PC中点,且垂直线段PC的平面上的点到P,C两点的距离相等,此平面与平面ABCD相交,两平面有一条公共直线.
解答:解:在空间中,存在过线段PC中点且垂直线段PC的平面,平面上点到P,C两点的距离相等,记此平面为α
平面α与平面ABCD有一个公共点,则它们有且只有一条过该点的公共直线.
故选A.
点评:本题是轨迹问题与空间线面关系相结合的题目,有助于学生提高学生的空间想象能力.
解答:解:在空间中,存在过线段PC中点且垂直线段PC的平面,平面上点到P,C两点的距离相等,记此平面为α
平面α与平面ABCD有一个公共点,则它们有且只有一条过该点的公共直线.
故选A.
点评:本题是轨迹问题与空间线面关系相结合的题目,有助于学生提高学生的空间想象能力.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目