题目内容

(本题满分12分)一盒子中有8个大小完全相同的小球,其中3个红球,2个白球,3个黑球.

(Ⅰ)若不放回地从盒中连续取两次球,每次取一个,求在第一次取到红球的条件下,第二次也取到红球的概率;

(Ⅱ)若从盒中任取3个球,求取出的3个球中红球个数X的分布列和数学期望.

 

【答案】

 

(Ⅰ)

(Ⅱ)   X的分布列为 

                                         

X的数学期望为:   

【解析】解:(Ⅰ)设事件A=“第一次取到红球”,事件B=“第二次取到红球”

由于是不放回地从盒中连续取两次球,每次取一个,所以第一次取球有8种方法,第二次取球是7种方法,一共的基本事件数是56,

由于第一次取到红球有3种方法,第二次取球是7种方法, … 2分

又第一次取到红球有3种方法,由于采取不放回取球,所以第二次取到红球有2种方法,             ……4分

(Ⅱ)从盒中任取3个球,取出的3个球中红球个数X的可能值为0,1,2,3…… 5分

   且有

,                 …… 9分       

X的分布列为                             …… 10分

X的数学期望为:     ……12分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网