题目内容
(本题满分12分)一盒子中有8个大小完全相同的小球,其中3个红球,2个白球,3个黑球.
(Ⅰ)若不放回地从盒中连续取两次球,每次取一个,求在第一次取到红球的条件下,第二次也取到红球的概率;
(Ⅱ)若从盒中任取3个球,求取出的3个球中红球个数X的分布列和数学期望.
【答案】
(Ⅰ)
(Ⅱ) X的分布列为
X的数学期望为:
【解析】解:(Ⅰ)设事件A=“第一次取到红球”,事件B=“第二次取到红球”
由于是不放回地从盒中连续取两次球,每次取一个,所以第一次取球有8种方法,第二次取球是7种方法,一共的基本事件数是56,
由于第一次取到红球有3种方法,第二次取球是7种方法, … 2分
又第一次取到红球有3种方法,由于采取不放回取球,所以第二次取到红球有2种方法, ……4分
(Ⅱ)从盒中任取3个球,取出的3个球中红球个数X的可能值为0,1,2,3…… 5分
且有 ,
, …… 9分
X的分布列为 …… 10分
X的数学期望为: ……12分
练习册系列答案
相关题目
(本题满分12分)
一汽车厂生产A、B、C三类轿车,每类轿车有豪华型和标准型两种型号,某月生产情况如下表(单位:辆)
|
轿车A |
轿车B |
轿车C |
舒适型 |
100 |
150 |
x |
标准型 |
300 |
450 |
600 |
按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(I)求x的值;
(I)列出所有基本事件,并求出至少有一辆是豪华型轿车的概率.