题目内容
已知双曲线
与射线y=
(x≥0)公共点为P,过P作两条倾斜角互补且不重合的直线,它们与双曲线都相交且另一个交点分别为A,B(不同于P).
(1)求点P到双曲线两条渐近线的距离之积;
(2)设直线PA斜率为k,求k的取值范围;
(3)求证直线AB的斜率为定值.
解:(1)由
,得P(2,1),
双曲线
的渐近线方程是
和
,
点P(2,1)到两条渐近线
和
的距离分别是
和
,
∴点P到双曲线两条渐近线的距离之积
d1d2=
.
(2)设直线PA斜率为k,则PA的方程为:y-1=k(x-2),
即kx-y+1-2k=0,
由
,消去y,并整理,得(1-2k2)x2+(8k2-4k)x+8k-8k2-4=0,
∵直线PA与双曲线
有两个交点,
∴△=(8k2-4k)2-4(1-2k2)(8k-8k2-4)>0,
即k2-2k+1>0,
∴k≠1.
故k的取值范围是(-∞,1)∪(1,+∞).
(3)∵P(2,1),设A(x1,y1),B(x2,y2),
∵PA和PB是两条倾斜角互补且不重合的直线,
设PA斜率是m,则PB斜率是-m
则PA:y=m(x-2)+1,PB:y=-m(x-2)+1,
分别与双曲线方程联立,得
,
(1-2m2)x12+(8m2-4m)x1+8m-8m2-4=0,
∵2是方程的一个根,
∴
-2,
同理,
-2,
∴
,
∵
,
,
∴y1-y2=
,
∴
=
=-1.
即直线AB的斜率为定值-1.
分析:(1)由
,得P(2,1),双曲线
的渐近线方程是
和
,由此能求出点P到双曲线两条渐近线的距离之积.
(2)设直线PA斜率为k,则PA的方程为kx-y+1-2k=0,由
,得(1-2k2)x2+(8k2-4k)x+8k-8k2-4=0,由直线PA与双曲线
有两个交点,知△=(8k2-4k)2-4(1-2k2)(8k-8k2-4)>0,由此能求出k的取值范围.
(3)P(2,1),设A(x1,y1),B(x2,y2),设PPA:y=m(x-2)+1,PB:y=-m(x-2)+1,分别与双曲线方程联立,得(1-2m2)x12+(8m2-4m)x1+8m-8m2-4=0,由2是方程的一个根,知
-2,同理,
-2,所以
,由
,
,所以y1-y2=
,由此能够证明直线AB的斜率为定值-1.
点评:本题主要考查双曲线的标准方程,简单几何性质,直线与双曲线的位置关系,双曲线的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
![](http://thumb.zyjl.cn/pic5/latex/248974.png)
双曲线
![](http://thumb.zyjl.cn/pic5/latex/7975.png)
![](http://thumb.zyjl.cn/pic5/latex/248975.png)
![](http://thumb.zyjl.cn/pic5/latex/248976.png)
点P(2,1)到两条渐近线
![](http://thumb.zyjl.cn/pic5/latex/248975.png)
![](http://thumb.zyjl.cn/pic5/latex/248976.png)
![](http://thumb.zyjl.cn/pic5/latex/248977.png)
![](http://thumb.zyjl.cn/pic5/latex/248978.png)
∴点P到双曲线两条渐近线的距离之积
d1d2=
![](http://thumb.zyjl.cn/pic5/latex/248979.png)
(2)设直线PA斜率为k,则PA的方程为:y-1=k(x-2),
即kx-y+1-2k=0,
由
![](http://thumb.zyjl.cn/pic5/latex/248980.png)
∵直线PA与双曲线
![](http://thumb.zyjl.cn/pic5/latex/7975.png)
∴△=(8k2-4k)2-4(1-2k2)(8k-8k2-4)>0,
即k2-2k+1>0,
∴k≠1.
故k的取值范围是(-∞,1)∪(1,+∞).
(3)∵P(2,1),设A(x1,y1),B(x2,y2),
∵PA和PB是两条倾斜角互补且不重合的直线,
设PA斜率是m,则PB斜率是-m
则PA:y=m(x-2)+1,PB:y=-m(x-2)+1,
分别与双曲线方程联立,得
![](http://thumb.zyjl.cn/pic5/latex/248981.png)
(1-2m2)x12+(8m2-4m)x1+8m-8m2-4=0,
∵2是方程的一个根,
∴
![](http://thumb.zyjl.cn/pic5/latex/248982.png)
同理,
![](http://thumb.zyjl.cn/pic5/latex/248983.png)
∴
![](http://thumb.zyjl.cn/pic5/latex/248984.png)
∵
![](http://thumb.zyjl.cn/pic5/latex/248985.png)
![](http://thumb.zyjl.cn/pic5/latex/248986.png)
∴y1-y2=
![](http://thumb.zyjl.cn/pic5/latex/248987.png)
∴
![](http://thumb.zyjl.cn/pic5/latex/17126.png)
![](http://thumb.zyjl.cn/pic5/latex/248988.png)
即直线AB的斜率为定值-1.
分析:(1)由
![](http://thumb.zyjl.cn/pic5/latex/248974.png)
![](http://thumb.zyjl.cn/pic5/latex/7975.png)
![](http://thumb.zyjl.cn/pic5/latex/248975.png)
![](http://thumb.zyjl.cn/pic5/latex/248976.png)
(2)设直线PA斜率为k,则PA的方程为kx-y+1-2k=0,由
![](http://thumb.zyjl.cn/pic5/latex/248980.png)
![](http://thumb.zyjl.cn/pic5/latex/7975.png)
(3)P(2,1),设A(x1,y1),B(x2,y2),设PPA:y=m(x-2)+1,PB:y=-m(x-2)+1,分别与双曲线方程联立,得(1-2m2)x12+(8m2-4m)x1+8m-8m2-4=0,由2是方程的一个根,知
![](http://thumb.zyjl.cn/pic5/latex/248982.png)
![](http://thumb.zyjl.cn/pic5/latex/248983.png)
![](http://thumb.zyjl.cn/pic5/latex/248984.png)
![](http://thumb.zyjl.cn/pic5/latex/248985.png)
![](http://thumb.zyjl.cn/pic5/latex/248986.png)
![](http://thumb.zyjl.cn/pic5/latex/248987.png)
点评:本题主要考查双曲线的标准方程,简单几何性质,直线与双曲线的位置关系,双曲线的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目