题目内容

微山县第一中学学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.
(1)设第一次训练时取到的新球个数为ξ,求ξ的分布列;
(2)求第二次训练时恰好取到一个新球的概率.
【答案】分析:(1)ξ的所有可能取值为0,1,2,设“第一次训练时取到i个新球(即ξ=i)”为事件Ai(i=0,1,2),求出相应的概率,可得ξ的分布列与数学期望;
(2)设“从6个球中任意取出2个球,恰好取到一个新球”为事件B,则“第二次训练时恰好取到一个新球”就是事件AB+A1B+A2B.而事件AB、A1B、A2B互斥,由此可得结论.
解答:解:(1)ξ的所有可能取值为0,1,2                
设“第一次训练时取到i个新球(即ξ=i)”为事件Ai(i=0,1,2).
因为集训前共有6个篮球,其中3个是新球,3个是旧球,所以
P(A)=P(ξ=0)==;P(A1)=P(ξ=1)==;P(A2)=P(ξ=2)==
所以ξ的分布列为
ξ12
P
ξ的数学期望为Eξ=0×+1×+2×=1;
(2)设“从6个球中任意取出2个球,恰好取到一个新球”为事件B,
则“第二次训练时恰好取到一个新球”就是事件AB+A1B+A2B,而事件AB、A1B、A2B互斥,
所以P(AB+A1B+A2B)=P(AB)+P(A1B)+P(A2B)==
点评:本题考查概率的求法,考查离散型随机变量的分布列与数学期望,确定变量的取值,求出概率是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网