题目内容
设与是定义在同一区间上的两个函数,若对任意,都有成立,则称和在上是“密切函数”,区间称为“密切区间”.若与在上是“密切函数”,则其“密切区间”可以是( )
A. [1,4] B. [2,3] C. [2,4] D. [3,4]
【答案】
B
【解析】解:因为f(x)与g(x)在[a,b]上是“密切函数”,
则|f(x)-g(x)|≤1即|x2-3x+4-(2x-3)|≤1即|x2-5x+7|≤1,
化简得-1≤x2-5x+7≤1,因为x2-5x+7的△<0即与x轴没有交点,由开口向上得到x2-5x+7>0>-1恒成立;
所以由x2-5x+7≤1解得2≤x≤3,所以它的“密切区间”是[2,3]
故选B
练习册系列答案
相关题目