题目内容
已知数列{an}是公差为d的等差数列,S1=
ai,S2=an+1+an+2+…+a2n,s3=a2n+1+a2n+2+…+a3n,则数列S1,S2,S3的公差为( )
| n |
| i=1 |
分析:由题意S1+S3重新组合后,由等差数列的性质可得其和等于S2,判断出数列S1,S2,S3是等差数列,再由等差数列的性质对S2-S1进行化简求出对应的公差.
解答:解:由题意可得S1+S3=(a1+a2+…+an)+(a2n+1+a2n+2+…+a3n)
=(a1+a2n+1)+(a2+a2n+2)+…+(an+a3n)
=2an+1+2an+2+…+2a2n=2S2,
故S1,S2,S3成等差数列,
其公差为S2-S1=(an+1+an+2+…+a2n)-(a1+a2+…+an)
=(an+1-a1)+(an+2-a2)+…+(a2n-an)
=n2d,
故选C.
=(a1+a2n+1)+(a2+a2n+2)+…+(an+a3n)
=2an+1+2an+2+…+2a2n=2S2,
故S1,S2,S3成等差数列,
其公差为S2-S1=(an+1+an+2+…+a2n)-(a1+a2+…+an)
=(an+1-a1)+(an+2-a2)+…+(a2n-an)
=n2d,
故选C.
点评:本题考查等差数列的性质和等差数列的判定,属中档题,易忘对数列S1,S2,S3进行判定.
练习册系列答案
相关题目