题目内容
若圆C过点M(0,1)且与直线l:y=-1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_ST/0.png)
(I)求曲线E的方程;
(II)若t=6,直线AB的斜率为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_ST/1.png)
(III)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l上,求证:t与
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_ST/2.png)
【答案】分析:(1)由点C到定点M的距离等于到定直线l的距离与抛物线的定义可得点C的轨迹为抛物线所以曲线E的方程为x2=4y.
(2)由题得直线AB的方程是x-2y+12=0联立抛物线的方程解得A(6,9)和B(-4,4),进而直线NA的方程为
,由A,B两点的坐标得到线段AB中垂线方程为
,可求N点的坐标,进而求出圆N的方程
.
(3)设A,B两点的坐标,由题意得过点A的切线方程为
又Q(a,-1),可得x12-2ax1-4=0同理得x22-2ax2-4=0所以x1+x2=2a,x1x2=-4.所以直线AB的方程为
所以t=-1.根据向量的运算得
=0.
解答:【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.
(Ⅱ)直线AB的方程是
,即x-2y+12=0.
由
及
知
,得A(6,9)和B(-4,4)
由x2=4y得
,
.
所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.
直线NA的方程为
,即
.①
线段AB的中点坐标为
,线段AB中垂线方程为
,即
.②
由①、②解得
.
于是,圆C的方程为
,
即
.
(Ⅲ)设
,
,Q(a,-1).过点A的切线方程为
,
即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.
又
=
,所以直线AB的方程为
,
即
,亦即
,所以t=-1.
而
,
,
所以![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/30.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/31.png)
=
.
点评:本题主要考查抛物线的定义和直线与曲线的相切问题,解决此类问题的必须熟悉曲线的定义和曲线的图形特征,这也是高考常考的知识点.
(2)由题得直线AB的方程是x-2y+12=0联立抛物线的方程解得A(6,9)和B(-4,4),进而直线NA的方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/2.png)
(3)设A,B两点的坐标,由题意得过点A的切线方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/5.png)
解答:【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.
(Ⅱ)直线AB的方程是
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/6.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/9.png)
由x2=4y得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/11.png)
所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.
直线NA的方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/13.png)
线段AB的中点坐标为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/16.png)
由①、②解得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/17.png)
于是,圆C的方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/18.png)
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/19.png)
(Ⅲ)设
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/22.png)
即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.
又
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/25.png)
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/27.png)
而
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/29.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/30.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/31.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181340271193481/SYS201310241813402711934019_DA/32.png)
点评:本题主要考查抛物线的定义和直线与曲线的相切问题,解决此类问题的必须熟悉曲线的定义和曲线的图形特征,这也是高考常考的知识点.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目