题目内容
12.圆C:ρ=-4sinθ上的动点P到直线l:ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$的最短距离为2$\sqrt{2}$-2.分析 圆C:ρ=-4sinθ,即ρ2=4ρsinθ,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可化为直角坐标方程,可得圆心C,半径r.直线l:ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$展开即可化为直角坐标方程.求出圆心C到直线l的距离d,即可得出圆C上的动点P到直线l的最短距离=d-r.
解答 解:圆C:ρ=-4sinθ,即ρ2=4ρsinθ,化为x2+y2=-4y,配方为x2+(y+2)2=4,可得圆心C(0,-2),半径r=2.
到直线l:ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$化为$\frac{\sqrt{2}}{2}(ρsinθ+ρcosθ)$=$\sqrt{2}$,化为x+y-2=0.
∴圆心C到直线l的距离d=$\frac{|0-2-2|}{\sqrt{2}}$=2$\sqrt{2}$,
∴圆C上的动点P到直线l的最短距离=d-r=2$\sqrt{2}$-2.
故答案为:2$\sqrt{2}$-2.
点评 本题考查了极坐标化为直角坐标方程的方法、直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
3.
在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )
| A. | 14斛 | B. | 22斛 | C. | 36斛 | D. | 66斛 |
17.在△ABC中,AD⊥BC,垂足为D,AD在△ABC的内部,且BD:DC:AD=2:3:6,则∠BAC的大小为( )
| A. | $\frac{3π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$或$\frac{π}{4}$ |
1.
如图,在大小为45°的二面角A-EF-D中,四边形ABFE与CDEF都是边长为1的正方形,则B与C两点间的距离是( )
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 1 | D. | $\sqrt{3-\sqrt{2}}$ |