题目内容

如图,四面体PABC的六条棱均相等,D、E、F分别是AB、BC、CA的中点,则下列四个结论中不成立的是(  )
A.平面PDE⊥平面ABCB.DF⊥平面PAE
C.BC平面PDFD.平面PAE⊥平面ABC
精英家教网

精英家教网
对于A,若平面PDE⊥平面ABC,因为等边△PAB中,PD⊥AB,
平面PDE∩平面ABC=AB,所以PD⊥平面ABC,可得PD⊥DE
同理可得PE⊥平面ABC,可得PE⊥DE.这样在△PDE中有两个角等于90°,
与三角形内角和定理矛盾,故平面PDE⊥平面ABC是错误的,得A不正确;
对于B,因为正△ABC中,中线AE⊥BC,同理PE⊥BC,结合线面垂直的判定定理,
得BC⊥平面PAE,又因为△ABC的中位线DFBC,所以DF⊥平面PAE,故B正确;
对于C,因为DFBC,DF?平面PDF,BC?平面PDF,故BC平面PDF,得C正确;
对于D,根据B项的证明得BC⊥平面PAE,结合BC?平面ABC,可得平面PAE⊥平面ABC,故D正确.
故选:A
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网