题目内容
(08年咸阳市二模) 过抛物线的对称轴上的定点,作直线与抛物线相交于两点.
(1)试证明两点的纵坐标之积为定值;
(2)若点是定直线上的任一点,试探索三条直线的斜率之间的关系,并给出证明.
解析:(1)证明:.设 有,下证之:
设直线的方程为:与联立得
消去得
由韦达定理得 ,
(2)解:三条直线的斜率成等差数列,下证之:
设点,则直线的斜率为;
直线的斜率为
又直线的斜率为
即直线的斜率成等差数列.
练习册系列答案
相关题目
题目内容
(08年咸阳市二模) 过抛物线的对称轴上的定点,作直线与抛物线相交于两点.
(1)试证明两点的纵坐标之积为定值;
(2)若点是定直线上的任一点,试探索三条直线的斜率之间的关系,并给出证明.
解析:(1)证明:.设 有,下证之:
设直线的方程为:与联立得
消去得
由韦达定理得 ,
(2)解:三条直线的斜率成等差数列,下证之:
设点,则直线的斜率为;
直线的斜率为
又直线的斜率为
即直线的斜率成等差数列.