题目内容
在△ABC中,三个顶点的坐标分别是A(2,4),B(-1,2),C(1,0),点P(x,y)在△ABC内部运动,若点P满足
+2
+3
=
,则S△PAC:S△ABC=
PA |
PB |
PC |
0 |
1:3
1:3
.分析:延长PB到B',使PB'=2PB,延长PC到C',使PC=3PC',根据
+
+
=
可知P是△AB'C'的重心,然后设S△PAB'=S△PAC'=S△PB'C'=k,然后将三个三角形的面积用k表示,即可求出所求.
PA |
PB′ |
PC’ |
0 |
解答:解:如图:延长PB到B',使PB'=2PB,延长PC到C',使PC=3PC'
则
+
+
=
,P是△AB'C'的重心,
则S△PAB'=S△PAC'=S△PB'C'=k
S1=
S△PAB'=
k,S3=
S△PAC'=
k
S2=
PB×PC×sin∠BPC=
S△PB'C'=
k
故S1:S2:S3=
:
:
=3:1:2
∴S△PAC:S△ABC=1:3
故答案为:1:3
则
PA |
PB′ |
PC’ |
0 |
则S△PAB'=S△PAC'=S△PB'C'=k
S1=
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
S2=
1 |
2 |
1 |
6 |
1 |
6 |
故S1:S2:S3=
1 |
2 |
1 |
6 |
1 |
3 |
∴S△PAC:S△ABC=1:3
故答案为:1:3
点评:本题主要考查了向量在几何中的应用,以及
+
+
=
则P是△AB'C'的重心的应用,属于中档题.
PA |
PB′ |
PC’ |
0 |
练习册系列答案
相关题目