题目内容

设抛物线y2=-8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为
3
,那么|PF|=(  )
分析:设P(x0,y0),由题意可得A(2,y0),|PA|=2-x0,F(-2,0),由AF的倾斜角为60°,可求得,|AF|=8,从而可求得点P的横坐标x0,继而可得答案.
解答:解法1:设P(x0,y0),由题意可得A(2,y0),|PA|=2-x0,F(-2,0)
∵直线AF的斜率为
3
,点F到准线的距离为2p=4,
∴AF的倾斜角为60°,|AF|=
4
cos60°
=8,
∴|AF|2=(2-(-2))2+y02=64,
y02=48,
y02=-8x0
∴x0=-6,
∴|PA|=2-x0=8,由抛物线的定义可知,|PF|=|PA|=8,
解法2:数形结合法.如图右,由题设知∠AFO=60°,PA∥FO,
所以∠FAP=60°,又因为PA=PF,
所以△PAF为正三角形,所以PF=FA=2FH=2p=8
故选C.
点评:本题考查抛物线的简单性质,求得点P的横坐标x0是关键,考查分析与转化的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网