题目内容

如下图,在△ABC中,点M是BC的中点,点N在边AC上,且AN=2NC,AM与BN相交于点P,求AP∶PM的值.

解析:=e1,=e2.

=-3e2-e1,

=2e1+e2,

∵A、P、M三点和B、P、N三点分别共线,

∴存在实数λ、μ,使=-λe1-3λe2,=2μe1e2.

=-=(λ+2μ)e1+(3λ+μ)e2.

=+=2e1+3e2.         

由平面向量基本定理得

解得

=,即AP∶PM=4∶1.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网