题目内容
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。
(Ⅰ)证明:面面;
(Ⅱ)求与所成的角;
(Ⅲ)求面与面所成二面角的大小。
(Ⅰ)证明:面面;
(Ⅱ)求与所成的角;
(Ⅲ)求面与面所成二面角的大小。
(1)由题设知,且与是平面内的两条相交直线,由此得面.又在面上,故面⊥面
(2)
(3)
(2)
(3)
试题分析:证明:以为坐标原点长为单位长度,如图建立空间直角坐标系,则各点坐标为
.
(Ⅰ)证明:因
由题设知,且与是平面内的两条相交直线,由此得面.又在面上,故面⊥面.
(Ⅱ)解:因
(Ⅲ)解:在上取一点,则存在使
要使
为
所求二面角的平面角.
点评:主要是考查了线面角以及二面角的求解,属于基础题。
练习册系列答案
相关题目