ÌâÄ¿ÄÚÈÝ
¸ø¶¨ÍÖÔ²£¬³ÆÔ²ÐÄÔÚÔµãO£¬°ë¾¶ÎªµÄÔ²ÊÇÍÖÔ²CµÄ¡°×¼Ô²¡±£®ÈôÍÖÔ²CµÄÒ»¸ö½¹µãΪ£¬Æä¶ÌÖáÉϵÄÒ»¸ö¶Ëµãµ½FµÄ¾àÀëΪ£®
£¨I£©ÇóÍÖÔ²CµÄ·½³ÌºÍÆä¡°×¼Ô²¡±·½³Ì£®£¨II£©µãPÊÇÍÖÔ²CµÄ¡°×¼Ô²¡±ÉϵÄÒ»¸ö¶¯µã£¬¹ýµãP×÷Ö±Ïßl1£¬l2£¬Ê¹µÃl1£¬l2ÓëÍÖÔ²C¶¼Ö»ÓÐÒ»¸ö½»µã£¬ÇÒl1£¬l2·Ö±ð½»Æä¡°×¼Ô²¡±ÓÚµãM£¬N£®
¢Ùµ±PΪ¡°×¼Ô²¡±ÓëyÖáÕý°ëÖáµÄ½»µãʱ£¬Çól1£¬l2µÄ·½³Ì£»
¢ÚÇóÖ¤£º|MN|Ϊ¶¨Öµ£®
½â£º£¨I£©ÒòΪ£¬ËùÒÔb=1
ËùÒÔÍÖÔ²µÄ·½³ÌΪ£¬
×¼Ô²µÄ·½³ÌΪx2+y2=4£®
£¨II£©£¨1£©ÒòΪ׼Բx2+y2=4ÓëyÖáÕý°ëÖáµÄ½»µãΪP£¨0£¬2£©£¬
Éè¹ýµãP£¨0£¬2£©£¬ÇÒÓëÍÖÔ²ÓÐÒ»¸ö¹«¹²µãµÄÖ±ÏßΪy=kx+2£¬
ËùÒÔ£¬ÏûÈ¥y£¬µÃµ½£¨1+3k2£©x2+12kx+9=0£¬
ÒòΪÍÖÔ²Óëy=kx+2Ö»ÓÐÒ»¸ö¹«¹²µã£¬
ËùÒÔ¡÷=144k2-4¡Á9£¨1+3k2£©=0£¬
½âµÃk=¡À1£®
ËùÒÔl1£¬l2·½³ÌΪy=x+2£¬y=-x+2£®
£¨2£©¢Ùµ±l1£¬l2ÖÐÓÐÒ»ÌõÎÞбÂÊʱ£¬²»·ÁÉèl1ÎÞбÂÊ£¬
ÒòΪl1ÓëÍÖÔ²Ö»ÓÐÒ»¸ö¹«¹²µã£¬ÔòÆä·½³ÌΪ»ò£¬
µ±l1·½³ÌΪʱ£¬´Ëʱl1Óë×¼Ô²½»Óڵ㣬
´Ëʱ¾¹ýµã£¨»ò£©ÇÒÓëÍÖÔ²Ö»ÓÐÒ»¸ö¹«¹²µãµÄÖ±ÏßÊÇy=1£¨»òy=-1£©£¬¼´l2Ϊy=1£¨»òy=-1£©£¬ÏÔȻֱÏßl1£¬l2´¹Ö±£»
ͬÀí¿ÉÖ¤l1·½³ÌΪʱ£¬Ö±Ïßl1£¬l2´¹Ö±£®
¢Úµ±l1£¬l2¶¼ÓÐбÂÊʱ£¬ÉèµãP£¨x0£¬y0£©£¬ÆäÖÐx02+y02=4£¬
Éè¾¹ýµãP£¨x0£¬y0£©ÓëÍÖÔ²Ö»ÓÐÒ»¸ö¹«¹²µãµÄÖ±ÏßΪy=t£¨x-x0£©+y0£¬
Ôò£¬ÏûÈ¥yµÃµ½x2+3£¨tx+£¨y0-tx0£©£©2-3=0£¬
¼´£¨1+3t2£©x2+6t£¨y0-tx0£©x+3£¨y0-tx0£©2-3=0£¬¡÷=[6t£¨y0-tx0£©]2-4•£¨1+3t2£©[3£¨y0-tx0£©2-3]=0£¬
¾¹ý»¯¼òµÃµ½£º£¨3-x02£©t2+2x0y0t+1-y02=0£¬
ÒòΪx02+y02=4£¬ËùÒÔÓУ¨3-x02£©t2+2x0y0t+£¨x02-3£©=0£¬
Éèl1£¬l2µÄбÂÊ·Ö±ðΪt1£¬t2£¬ÒòΪl1£¬l2ÓëÍÖÔ²¶¼Ö»ÓÐÒ»¸ö¹«¹²µã£¬
ËùÒÔt1£¬t2Âú×ãÉÏÊö·½³Ì£¨3-x02£©t2+2x0y0t+£¨x02-3£©=0£¬
ËùÒÔt1•t2=-1£¬¼´l1£¬l2´¹Ö±£®
×ۺϢ٢ÚÖª£ºÒòΪl1£¬l2¾¹ýµãP£¨x0£¬y0£©£¬ÓÖ·Ö±ð½»Æä×¼Ô²ÓÚµãM£¬N£¬ÇÒl1£¬l2´¹Ö±£¬
ËùÒÔÏ߶ÎMNΪ׼Բx2+y2=4µÄÖ±¾¶£¬ËùÒÔ|MN|=4£®
·ÖÎö£º£¨I£©ÓÉÍÖÔ²µÄ·½³ÌÓë×¼Ô²µÄ·½³Ì¹ØϵÇóµÃ×¼Ô²µÄ·½³Ì
£¨II£©£¨1£©ÓÉ×¼Ô²x2+y2=4ÓëyÖáÕý°ëÖáµÄ½»µãΪP£¨0£¬2£©£¬
ÉèÍÖÔ²ÓÐÒ»¸ö¹«¹²µãµÄÖ±ÏßΪy=kx+2£¬Óë×¼Ô²·½³ÌÁªÁ¢£¬ÓÉÍÖÔ²Óëy=kx+2Ö»ÓÐÒ»¸ö¹«¹²µã£¬ÇóµÃk£®´Ó¶øµÃl1£¬l2·½³Ì
£¨2£©·ÖÁ½ÖÖÇé¿ö¢Ùµ±l1£¬l2ÖÐÓÐÒ»ÌõÎÞбÂʺ͢ڵ±l1£¬l2¶¼ÓÐбÂÊ´¦Àí£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÖ±ÏßÓëÇúÏßµÄλÖùØϵ£¬Í¨¹ýÇé¾³ÉèÖã¬ÍØÕ¹ÁËԲ׶ÇúÏßµÄÓ¦Ó÷¶Î§£¬Í¬Ê±Éø͸ÁËÆäËû֪ʶ£¬¿¼²éÁËѧÉú×ÛºÏÔËÓÃ֪ʶµÄÄÜÁ¦£®
ËùÒÔÍÖÔ²µÄ·½³ÌΪ£¬
×¼Ô²µÄ·½³ÌΪx2+y2=4£®
£¨II£©£¨1£©ÒòΪ׼Բx2+y2=4ÓëyÖáÕý°ëÖáµÄ½»µãΪP£¨0£¬2£©£¬
Éè¹ýµãP£¨0£¬2£©£¬ÇÒÓëÍÖÔ²ÓÐÒ»¸ö¹«¹²µãµÄÖ±ÏßΪy=kx+2£¬
ËùÒÔ£¬ÏûÈ¥y£¬µÃµ½£¨1+3k2£©x2+12kx+9=0£¬
ÒòΪÍÖÔ²Óëy=kx+2Ö»ÓÐÒ»¸ö¹«¹²µã£¬
ËùÒÔ¡÷=144k2-4¡Á9£¨1+3k2£©=0£¬
½âµÃk=¡À1£®
ËùÒÔl1£¬l2·½³ÌΪy=x+2£¬y=-x+2£®
£¨2£©¢Ùµ±l1£¬l2ÖÐÓÐÒ»ÌõÎÞбÂÊʱ£¬²»·ÁÉèl1ÎÞбÂÊ£¬
ÒòΪl1ÓëÍÖÔ²Ö»ÓÐÒ»¸ö¹«¹²µã£¬ÔòÆä·½³ÌΪ»ò£¬
µ±l1·½³ÌΪʱ£¬´Ëʱl1Óë×¼Ô²½»Óڵ㣬
´Ëʱ¾¹ýµã£¨»ò£©ÇÒÓëÍÖÔ²Ö»ÓÐÒ»¸ö¹«¹²µãµÄÖ±ÏßÊÇy=1£¨»òy=-1£©£¬¼´l2Ϊy=1£¨»òy=-1£©£¬ÏÔȻֱÏßl1£¬l2´¹Ö±£»
ͬÀí¿ÉÖ¤l1·½³ÌΪʱ£¬Ö±Ïßl1£¬l2´¹Ö±£®
¢Úµ±l1£¬l2¶¼ÓÐбÂÊʱ£¬ÉèµãP£¨x0£¬y0£©£¬ÆäÖÐx02+y02=4£¬
Éè¾¹ýµãP£¨x0£¬y0£©ÓëÍÖÔ²Ö»ÓÐÒ»¸ö¹«¹²µãµÄÖ±ÏßΪy=t£¨x-x0£©+y0£¬
Ôò£¬ÏûÈ¥yµÃµ½x2+3£¨tx+£¨y0-tx0£©£©2-3=0£¬
¼´£¨1+3t2£©x2+6t£¨y0-tx0£©x+3£¨y0-tx0£©2-3=0£¬¡÷=[6t£¨y0-tx0£©]2-4•£¨1+3t2£©[3£¨y0-tx0£©2-3]=0£¬
¾¹ý»¯¼òµÃµ½£º£¨3-x02£©t2+2x0y0t+1-y02=0£¬
ÒòΪx02+y02=4£¬ËùÒÔÓУ¨3-x02£©t2+2x0y0t+£¨x02-3£©=0£¬
Éèl1£¬l2µÄбÂÊ·Ö±ðΪt1£¬t2£¬ÒòΪl1£¬l2ÓëÍÖÔ²¶¼Ö»ÓÐÒ»¸ö¹«¹²µã£¬
ËùÒÔt1£¬t2Âú×ãÉÏÊö·½³Ì£¨3-x02£©t2+2x0y0t+£¨x02-3£©=0£¬
ËùÒÔt1•t2=-1£¬¼´l1£¬l2´¹Ö±£®
×ۺϢ٢ÚÖª£ºÒòΪl1£¬l2¾¹ýµãP£¨x0£¬y0£©£¬ÓÖ·Ö±ð½»Æä×¼Ô²ÓÚµãM£¬N£¬ÇÒl1£¬l2´¹Ö±£¬
ËùÒÔÏ߶ÎMNΪ׼Բx2+y2=4µÄÖ±¾¶£¬ËùÒÔ|MN|=4£®
·ÖÎö£º£¨I£©ÓÉÍÖÔ²µÄ·½³ÌÓë×¼Ô²µÄ·½³Ì¹ØϵÇóµÃ×¼Ô²µÄ·½³Ì
£¨II£©£¨1£©ÓÉ×¼Ô²x2+y2=4ÓëyÖáÕý°ëÖáµÄ½»µãΪP£¨0£¬2£©£¬
ÉèÍÖÔ²ÓÐÒ»¸ö¹«¹²µãµÄÖ±ÏßΪy=kx+2£¬Óë×¼Ô²·½³ÌÁªÁ¢£¬ÓÉÍÖÔ²Óëy=kx+2Ö»ÓÐÒ»¸ö¹«¹²µã£¬ÇóµÃk£®´Ó¶øµÃl1£¬l2·½³Ì
£¨2£©·ÖÁ½ÖÖÇé¿ö¢Ùµ±l1£¬l2ÖÐÓÐÒ»ÌõÎÞбÂʺ͢ڵ±l1£¬l2¶¼ÓÐбÂÊ´¦Àí£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÖ±ÏßÓëÇúÏßµÄλÖùØϵ£¬Í¨¹ýÇé¾³ÉèÖã¬ÍØÕ¹ÁËԲ׶ÇúÏßµÄÓ¦Ó÷¶Î§£¬Í¬Ê±Éø͸ÁËÆäËû֪ʶ£¬¿¼²éÁËѧÉú×ÛºÏÔËÓÃ֪ʶµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿