ÌâÄ¿ÄÚÈÝ

ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}ÖУ¬a1=1£¬SnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬¶ÔÈÎÒân¡ÊN*£¬ÓР2Sn=2an2+an-1£®º¯Êýf£¨x£©=x2+x£¬ÊýÁÐ{bn}µÄÊ×Ïîb1=
3
2
£¬bn+1=f(bn) -
1
4
£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Áîcn=log2(bn+
1
2
)
ÇóÖ¤£º{cn}ÊǵȱÈÊýÁв¢Çó{cn}ͨÏʽ£»
£¨¢ó£©Áîdn=an•cn£¬£¨nΪÕýÕûÊý£©£¬ÇóÊýÁÐ{dn}µÄÇ°nÏîºÍTn£®
·ÖÎö£º£¨¢ñ£©ÀûÓà2Sn=2an2+an-1£®ÍƳöan+1£¬anµÄ¹Øϵʽ£¬ËµÃ÷ÊýÁÐÊǵȲîÊýÁУ¬È»ºóÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÀûÓÃbn+1=f(bn) -
1
4
£¬ÒÔ¼°cn=log2(bn+
1
2
)
£¬ÍƳö{cn}ÊǵȱÈÊýÁУ¬¼´¿ÉÇó{cn}ͨÏʽ£»
£¨¢ó£©Í¨¹ýdn=an•cn£¬£¨nΪÕýÕûÊý£©£¬Çó³ödnµÄ±í´ïʽ£¬ÀûÓôíλÏà¼õ·¨·¨Ö±½ÓÇó½âÇ°nÏîºÍTn£®
½â´ð£º½â£º£¨¢ñ£©ÓÉ 2Sn=an2+an-1      ¢Ù
µÃ2Sn+1=an+12+an+1-1         ¢Ú
ÓÉ¢Ú-¢Ù£¬µÃ  2an+1=2(an+12-an2)  +an+1-an£¬
¼´£º2(an+1 -an )(an+1+an)  -(an+1+an)=0£¨2·Ö£©
¡à(2an+1 -2an  -1)(an+1+an)=0ÓÉÓÚÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬
¡à2an+1 -2an  -1=0
¼´  an+1-an=
1
2
¡àÊýÁÐ{an}ÊÇÊ×ÏîΪ1£¬¹«²îΪ
1
2
µÄµÈ²îÊýÁУ¬
¡àÊýÁÐ{an}µÄͨÏʽÊÇ  an=1+(n-1)¡Á
1
2
=
n+1
2
£¨4·Ö£©
£¨¢ò£©ÓÉbn+1=f(bn) -
1
4
Öªbn+1=bn 2+bn
1
4
£¬
ËùÒÔbn+1+
1
2
= (bn+
1
2
)
2
£¬
ÓÐlog2(bn+1+
1
2
) =log2(bn+
1
2
)2
=2log2(bn+
1
2
)
£¬¼´cn+1=2Cn£¨6·Ö£©
¶øc1=log2(b1+
1
2
)
=
log
2
2
=1
£¬
¹Ê{cn}ÊÇÒÔc1=1ΪÊ×Ï¹«±ÈΪ2µÄµÈ±ÈÊýÁУ®
ËùÒÔcn=2n-1£¨8·Ö£©
£¨¢ó£©dn=an•cn=
n+1
2
2n-1
=£¨n+1£©2n-2£¬
ËùÒÔÊýÁÐ{dn}µÄÇ°nÏîºÍTn=2•2-1+3•20+¡­+n•2n-3+£¨n+1£©•2n-2¡­¢Ù£®
2Tn=2•2+3•21+¡­+n•2n-2+£¨n+1£©•2n-1¡­¢Ú£®
¢Ù-¢ÚµÃ-Tn=1+2+22+¡­+2n-2-£¨n+1£©•2n-1=1+
2(1-2n-2)
1-2
-£¨n+1£©•2n-1=-n•2n-1£¬
½âµÃTn=n•2n-1£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÇóºÍ£¬µÈ²îÊýÁеÄͨÏʽ£¬µÈ²î¹ØϵµÄÈ·¶¨£¬µÈ±È¹ØϵµÄÈ·¶¨£¬´íλÏà¼õ·¨µÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø