题目内容
(本小题满分13分)
已知函数的图象按向量平移得到函数的图象.
(1) 求实数a、b的值;
(2) 设函数,求函数的单调递增区间和最值.
已知函数的图象按向量平移得到函数的图象.
(1) 求实数a、b的值;
(2) 设函数,求函数的单调递增区间和最值.
(1)a=1,b=0(2),
(1) 依题意按向量0平移得
f(x)-=sin[2(x+)+] 得f(x)=-sin(2x+)+
又f(x)=acos(x+)+b=-sin(2x+)++b
比较得a=1,b=0 ··································································· 6分
(2)(x)=g(x)-f(x)=sin(2x+)-cos(2x+)-=sin(2x+)-
∴(x)的单调增区间为,值域为 13分
f(x)-=sin[2(x+)+] 得f(x)=-sin(2x+)+
又f(x)=acos(x+)+b=-sin(2x+)++b
比较得a=1,b=0 ··································································· 6分
(2)(x)=g(x)-f(x)=sin(2x+)-cos(2x+)-=sin(2x+)-
∴(x)的单调增区间为,值域为 13分
练习册系列答案
相关题目