题目内容
【题目】在平面直角坐标系中内动点P(x,y)到圆F:x2+(y﹣1)2=1的圆心F的距离比它到直线y=﹣2的距离小1.
(1)求动点P的轨迹方程;
(2)设点P的轨迹为曲线E,过点F的直线l的斜率为k,直线l交曲线E于A,B两点,交圆F于C,D两点(A,C两点相邻).
①若 =t ,当t∈[1,2]时,求k的取值范围;
②过A,B两点分别作曲线E的切线l1 , l2 , 两切线交于点N,求△ACN与△BDN面积之积的最小值.
【答案】
(1)解:由题意,动点P(x,y)到F(0,1)的距离比到直线y=﹣2的距离小1,
∴动点P(x,y)到F(0,1)的距离等于它到直线y=﹣1的距离,
∴动点P的轨迹是以F(0,1)为焦点的抛物线,其方程为x2=4y
(2)解:①由题意知,直线l方程为y=kx+1,代入抛物线得x2﹣4kx﹣4=0,
设(x1,y1),B(x2,y2),则x1+x2=4k,x1x2=﹣4,
∵ =t ,∴t=﹣ ,
∴ =﹣t﹣ +2=﹣4k2,
∴t+ =4k2+2
∵f(t)=t+ 在[1,2]上单调递增,∴2≤t+ ,
∴ ;
②y= ,y′= ,
∴直线AN:y﹣ x12= x1(x﹣x1),BN:y﹣ x22= x1(x﹣x2),
两式相减整理可得x= (x1+x2)=2k,
∴N(2k,﹣1),N到直线AB的距离d=2 ,
∵|AC|=|AF|﹣1=y1,|BD|=|BF|﹣1=y2,
∴|AC||BD|=1
∴△ACN与△BDN面积之积= = =1+k2,
当且仅当k=0时,△ACN与△BDN面积之积的最小值为0
【解析】(1)由动点P(x,y)到F(0,1)的距离比到直线y=﹣2的距离小1,可得动点P(x,y)到F(0,1)的距离等于它到直线y=﹣1的距离,利用抛物线的定义,即可求动点P的轨迹W的方程;(2)①由题意知,直线l方程为y=kx+1,代入抛物线得x2﹣4kx﹣4=0,利用条件,结合韦达定理,可得t+ =4k2+2,利用函数的单调性,即可求k的取值范围;②求出直线AN,BN的方程,表示出面积,即可得出结论.
【题目】第 届夏季奥林匹克运动会将于2016年8月5日 21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
| 第31届里约 | 第30届伦敦 | 第29届北京 | 第28届雅典 | 第27届悉尼 |
中国 | 26 | 38 | 51 | 32 | 28 |
俄罗斯 | 19 | 24 | 24 | 27 | 32 |
(1)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(2)下表是近五届奥运会中国代表团获得的金牌数之和 (从第 届算起,不包括之前已获得的金牌数)随时间 (时间代号)变化的数据:
届 | 27 | 28 | 29 | 30 | 31 |
时间代号(x) | 1 | 2 | 3 | 5 | |
金牌数之和(y枚) | 28 | 60 | 111 | 149 | 175 |
作出散点图如下:
①由图中可以看出,金牌数之和 与时间代号 之间存在线性相关关系,请求出 关于 的线性回归方程;
②利用①中的回归方程,预测2020年第32届奥林匹克运动会中国代表团获得的金牌数.
参考数据:,,.
附:对于一组数据 ,,,,其回归直线的斜率的最小二乘估计为.