题目内容
已知公差不为零的等差数列{an}的前6项和为60,且a6是a1和a21的等比中项.(1)求数列{an}的通项公式;
(2)若数列{bn}满足:bn=
1 | an•an+1 |
分析:(I)设{an}的公差为d,则可得
,从而可求
(II)由(I)可得,bn=
=
(
-
)=
(
-
)利用叠加法可求
|
(II)由(I)可得,bn=
1 |
an•an+1 |
1 |
2 |
1 |
an |
1 |
an+1 |
1 |
2 |
1 |
2n-3 |
1 |
2n-1 |
解答:解:(I)设{an}的公差为d,
则
?
?an=2n+3
(II)bn=
=
(
-
)=
(
-
)
Sn=b1+b2+…+bn
=
(
-
+…+
-
)
叠加得Sn=
(
-
)=
则
|
|
(II)bn=
1 |
an•an+1 |
1 |
2 |
1 |
an |
1 |
an+1 |
1 |
2 |
1 |
2n-3 |
1 |
2n-1 |
Sn=b1+b2+…+bn
=
1 |
2 |
1 |
a1 |
1 |
a2 |
1 |
an |
1 |
an+1 |
叠加得Sn=
1 |
2 |
1 |
a1 |
1 |
an+1 |
n |
5(2n+5) |
点评:本题主要考查了等差数列与等比数列得综合知识应用,而裂项求和是数列求和中的重要方法,要注意掌握.
练习册系列答案
相关题目