题目内容
某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有( )种.
分析:因为题目中有一个条件甲和乙不同去,因此解题时要针对于甲和乙去不去展开分类,包括三种情况:甲去,则乙不去;甲不去,乙去;甲、乙都不去.根据分类计数原理得到结果.
解答:解:法一:直接法,
某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),
其中甲和乙不同去,可以分情况讨论,
①甲去,则乙不去,有C63•A44=480种选法;
②甲不去,乙去,有C63•A44=480种选法;
③甲、乙都不去,有A64=360种选法;
根据分类计数原理知
共有480+480+360=1320种不同的选派方案.
法二:间接法,
某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),共有
种选法;
甲、乙同去的选法有
种选法,
所以甲、乙不同去的选法有 A84-1×1×C62A44=1320.
故选A.
某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),
其中甲和乙不同去,可以分情况讨论,
①甲去,则乙不去,有C63•A44=480种选法;
②甲不去,乙去,有C63•A44=480种选法;
③甲、乙都不去,有A64=360种选法;
根据分类计数原理知
共有480+480+360=1320种不同的选派方案.
法二:间接法,
某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),共有
A | 4 8 |
甲、乙同去的选法有
C | 2 6 |
×A | 4 4 |
所以甲、乙不同去的选法有 A84-1×1×C62A44=1320.
故选A.
点评:用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析要完成的“一件事”是什么,可以“分类”还是需要“分步”.特殊元素,优先处理;特殊位置,优先考虑.
练习册系列答案
相关题目
某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有( )种.
A、150 | B、300 | C、600 | D、900 |