题目内容
设f(x)定义如下面数表,数列{xn}满足x0=5,且对任意自然数n均有xn+1=f(xn),则x2014的值为 .
x | 1 | 2 | 3 | 4 | 5 |
f(x) | 4 | 1 | 3 | 5 | 2 |
分析:数列{xn}满足x0=5,且对任意自然数n均有xn+1=f(xn),利用表格可得:
可得x1=f(x0)=f(5)=2,x2=f(x1)=f(2)=1,x3=f(x2)=f(1)=4,x4=f(x3)=f(4)=5,x5=f(x4)=f(5)=2,…,于是得到xn+4=xn,进而得出答案.
可得x1=f(x0)=f(5)=2,x2=f(x1)=f(2)=1,x3=f(x2)=f(1)=4,x4=f(x3)=f(4)=5,x5=f(x4)=f(5)=2,…,于是得到xn+4=xn,进而得出答案.
解答:解:∵数列{xn}满足x0=5,且对任意自然数n均有xn+1=f(xn),利用表格可得:
∴x1=f(x0)=f(5)=2,x2=f(x1)=f(2)=1,x3=f(x2)=f(1)=4,x4=f(x3)=f(4)=5,x5=f(x4)=f(5)=2,…,
∴xn+4=xn,
∴x2014=x503×4+2=x2=1.
故答案为:1.
∴x1=f(x0)=f(5)=2,x2=f(x1)=f(2)=1,x3=f(x2)=f(1)=4,x4=f(x3)=f(4)=5,x5=f(x4)=f(5)=2,…,
∴xn+4=xn,
∴x2014=x503×4+2=x2=1.
故答案为:1.
点评:本题考查了数列的周期性,属于中档题.
练习册系列答案
相关题目
设f(x)定义如下面数表,{xn}满足x=5,且对任意自然数n均有xn+1=f(xn),则x2007的值为 .
x | 1 | 2 | 3 | 4 | 5 |
f(x) | 4 | 1 | 3 | 5 | 2 |