题目内容
计算:(1)(-33 |
8 |
2 |
3 |
1 |
2 |
2 |
3 |
2 |
(2)log2.56.25+lg0.01+ln
e |
分析:(1)根据有理数指数幂的运算性质,我们根据(am)n=amn,a-1=
及a0=1,易得到结论.
(2)根据对数的运算性质,我们由logaan=n,alogaN=N化简式子,即可得到结果.
1 |
a |
(2)根据对数的运算性质,我们由logaan=n,alogaN=N化简式子,即可得到结果.
解答:解(1)原式=(
)
+(10-2)-
-
+1
=
+10-(
+1)+1(4分)
=
+10-
(6分)
=
-
(7分)
(2)原式=log2.52.52+lg10-2+lne
+2×2 log23
=2-2+
+2×3 (5分)
=
(7分)
-27 |
8 |
2 |
3 |
1 |
2 |
1 | ||
|
=
9 |
4 |
2 |
=
9 |
4 |
2 |
=
49 |
4 |
2 |
(2)原式=log2.52.52+lg10-2+lne
1 |
2 |
=2-2+
1 |
2 |
=
13 |
2 |
点评:本题考查的知识点有理数指数幂的化简求值,对数的运算性质,熟练掌握对数的运算性质和指数运算的性质是解答本题的关键.
练习册系列答案
相关题目