题目内容

如图,Rt△ABC的顶点坐标A(-3,0),直角顶点B(-1,-),顶点C在x轴上.
(1)求BC边所在直线方程;
(2)M为Rt△ABC外接圆的圆心,求圆M的方程;
(3)直线l与圆相切于第一象限,求切线与两坐标轴所围成的三角形面积最小时的切线方程.
【答案】分析:(1)由顶点B,C的坐标可求BC的斜率,再根据点C(3,0)可求BC边所在直线方程;
(2)Rt△ABC外接圆是以O为原点,3为半径的圆,从而可求圆M的方程;
(3)设直线方程为,利用直线l与圆相切可知,从而利用均值不等式有ab≥18,因此可求直线方程.
解答:解:(1),∵C(3,0),∴
(2)由(1)知C(3,0),∵M为Rt△ABC外接圆的圆心,所以M坐标为(0,0),所以圆M:x2+y2=9.
(3)设直线方程为,即
由相切可知.由均值不等式,则ab≥18.
所以,当且仅当时等号成立,则直线方程为
点评:本题主要考查直线与圆的方程的求解,考查基本不等式的运用,属于基础题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网