题目内容
设集合,如果满足:对任意,都存在,使得,那么称为集合的一个聚点,则在下列集合中:(1);(2);(3);(4),以为聚点的集合有
(写出所有你认为正确的结论的序号).
(2)(3)
解析试题分析:(1)对于某个a<1,比如a=0.5,此时对任意的x∈Z+∪Z-,都有|x-0|=0或者|x-0|≥1,也就是说不可能0<|x-0|<0.5,从而0不是Z+∪Z-的聚点;
(2)集合{x|x∈R,x≠0},对任意的a,都存在x=(实际上任意比a小得数都可以),使得0<|x|=<a,∴0是集合{x|x∈R,x≠0}的聚点;
(3)集合中的元素是极限为0的数列,对于任意的a>0,存在n>,使0<|x|=<a,∴0是集合的聚点.
(4)集合中的元素是极限为1的数列,除了第一项0之外,其余的都至少比0大,∴在a<的时候,不存在满足得0<|x|<a的x,
∴0不是集合的聚点.
故答案为(2)(3).
考点:新定义问题,集合元素的性质,数列的性质。
点评:中档题,理解新定义是正确解题的关键之一,能正确认识集合中元素---数列的特征,是正确解题的又一关键。
练习册系列答案
相关题目