题目内容

已知两个数列{Sn}、{Tn}分别:
当n∈N*,Sn=1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
,Tn=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n

(1)求S1,S2,T1,T2
(2)猜想Sn与Tn的关系,并用数学归纳法证明.
分析:(1)由已知直接利用n=1,2,求出S1,S2,T1,T2的值;
(2)利用(1)的结果,直接猜想Sn=Tn,然后利用数学归纳法证明,①验证n=1时猜想成立;②假设n=k时,Sk=Tk,通过假设证明n=k+1时猜想也成立即可.
解答:解:(1)S1=1-
1
2
=
1
2
,S2=1-
1
2
1
3
-
1
4
=
7
12

T1=
1
1+1
=
1
2
,T2=
1
2+1
+
1
2+2
=
7
12
(2分)
(2)猜想:Sn=Tn(n∈N*),即:
1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n

(n∈N*)(5分)
下面用数学归纳法证明:
①当n=1时,已证S1=T1(6分)
②假设n=k时,Sk=Tk(k≥1,k∈N*),
即:1-
1
2
+
1
3
-
1
4
+…+
1
2k-1
-
1
2k
=
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
(8分)
则:Sk+1=Sk+
1
2k+1
-
1
2(k+1)
=Tk+
1
2k+1
-
1
2(k+1)
(10分)
=
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
-
1
2(k+1)
(11分)
=
1
k+2
+
1
k+3
+…+
1
2k+1
+(
1
k+1
-
1
2(k+1)
)

=
1
(k+1)+1
+
1
(k+1)+2
+…+
1
2k+1
+
1
2(k+1)
=Tk+1
由①,②可知,对任意n∈N*,Sn=Tn都成立.(14分)
点评:本题是中档题,考查数列递推关系式的应用,数学归纳法证明数列问题的方法,考查逻辑推理能力,计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网