题目内容
已知f(x)=a1x+a2x2+a3x3+…+anxn,且a1,a2,a3,…,an组成等差数列(n为正偶数),又f(1)=n2,f(-1)=n;
(1)求数列{an}的通项an;
(2)求f(
)的值;
(3)比较f(
)的值与3的大小,并说明理由.
(1)求数列{an}的通项an;
(2)求f(
1 |
2 |
(3)比较f(
1 |
2 |
分析:(1)设数列的公差为d,因为f(1)=a1+a2+a3+…+an=n2,即数列的前n项和为n2,则n有a1+
d=n2,又f(-1)=-a1+a2-a3+…-an-1+an=n,即
×d=n,d=2,联立可得答案;
(2)根据题意,f(
)=(
)+3(
)2+5(
)3+…+(2n-1)(
)n,将f(
)看成一个数列的前n项和,由错位相减法求解即可;
(3)由(2)的结论,f(
)=
-(2n+3)(
)n,易得f(
)<
,进而可得答案.
n(n-1) |
2 |
n |
2 |
(2)根据题意,f(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
(3)由(2)的结论,f(
1 |
2 |
3 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
解答:解:(1)设数列的公差为d,
因为f(1)=a1+a2+a3+…+an=n2,则na1+
d=n2,即2a1+(n-1)d=2n.
又f(-1)=-a1+a2-a3+…-an-1+an=n,即
×d=n,d=2.
解得a1=1.
∴an=1+2(n-1)=2n-1.
(2)f(
)=(
)+3(
)2+5(
)3+…+(2n-1)(
)n,①
两边都乘以
,可得
f(
)=(
)2+3(
)3+5(
)4+…+(2n-1)(
)n+1,②
①-②,得
f(
)=
+2(
)2+2(
)3+…+2(
)n-(2n-1)(
)n+1,
即
f(
)=
+
+(
)2+…+(
)n-1-(2n-1)(
)n+1.
∴f(
)=1+1+
+
+…+
-(2n-1)
=1+
-(2n-1)
=1+2-
-(2n-1)
=3-(2n+3)(
)n;
则f(
)=3-(2n+3)(
)n;
(3)由(2)的结论,f(
)=3-(2n+3)(
)n,
又由(2n+3)(
)n>0,
易得3-(2n+3)(
)n<3,
则f(
)<3.
因为f(1)=a1+a2+a3+…+an=n2,则na1+
n(n-1) |
2 |
又f(-1)=-a1+a2-a3+…-an-1+an=n,即
n |
2 |
解得a1=1.
∴an=1+2(n-1)=2n-1.
(2)f(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
两边都乘以
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
①-②,得
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
即
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴f(
1 |
2 |
1 |
2 |
1 |
22 |
1 |
2n-2 |
1 |
2n |
1-
| ||
1-
|
1 |
2n |
1 |
2n-2 |
1 |
2n |
1 |
2 |
则f(
1 |
2 |
1 |
2 |
(3)由(2)的结论,f(
1 |
2 |
1 |
2 |
又由(2n+3)(
1 |
2 |
易得3-(2n+3)(
1 |
2 |
则f(
1 |
2 |
点评:本题考查数列与函数的综合,涉及等差数列的性质与错位相减法求数列的前n项和;要求学生熟练掌握等差数列的性质与数列求和的方法.

练习册系列答案
相关题目