题目内容

已知正四棱柱ABCD-A1B1C1D1的底面边长AB=6,侧棱长,它的外接球的球心为O,点E是AB的中点,点P是球O的球面上任意一点,有以下判断,
(1)PE长的最大值是9;(2)三棱锥P-EBC的最大值是;(3)存在过点E的平面,截球O的截面面积是3π;(4)三棱锥P-AEC1体积的最大值是20.
正确的是   
【答案】分析:(1)先求出球的半径,然后求PE的长+半径;
(2)P到平面EBC的距离+半径就是P到平面EBC的距离最大值;
(3)求出截球O的截面面积是3π,可以判断(3)的正确性
(4)三棱锥P-AEC1体积的表达式,再求最大值;判断(4)的正确性.
解答:解:由题意可知球心在体对角线的中点,直径为:
半径是5,(1)PE长的最大值是:5+=9,正确;
(2)P到平面EBC的距离最大值是5+=5+,错误;
(3)球的大圆面积是25π,过E与球心连线垂直的平面是小圆,面积为9π,因而(3)是错误的.
(4)三棱锥P-AEC1体积的最大值是V==(h最大是半径)正确.
故答案为:(1)(4)
点评:本题考查棱柱的结构特征,点、到线、到面的距离,体积问题,外接体问题,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网