题目内容

(2013•梅州二模)已知函数f(x)=
lnx
x
的图象为曲线C,函数g(x)=
1
2
ax+b的图象为直线l.
(1)当a=2,b=-3时,求F(x)=f(x)-g(x)的最大值;
(2)设直线l与曲线C的交点的横坐标分别为x1,x2,且x1≠x2,求证:(x1+x2)g(x1+x2)>2.
分析:(1)由a=2,b=-3,知F′(x)=
1-lnx
x2
-1=
1-lnx-x2
x2
=0⇒x=1
,x∈(0,1),F'(x)>0,F'(x)单调递增,x∈(1,+∞),F'(x)<0,F'(x)单调递减,由此能求出F(x)=f(x)-g(x)的最大值.
(2)设x1<x2,要证(x1+x2)g(x1+x2)>2,只需证(x1+x 2)[
1
2
a(x1+x2)+b]>2
,由此入手,能够证明(x1+x2)g(x1+x2)>2.
解答:解:(1)∵a=2,b=-3∴F(x)=
lnx
x
-x+3

F′(x)=
1-lnx
x2
-1=
1-lnx-x2
x2
=0⇒x=1

x∈(0,1),F'(x)>0,F'(x)单调递增,
x∈(1,+∞),F'(x)<0,F'(x)单调递减,
∴F(x)max=F(1)=2
(2)不妨设x1<x2,要证(x1+x2)g(x1+x2)>2,只需证(x1+x 2)[
1
2
a(x1+x2)+b]>2

1
2
a(x1+x2)+b>
2
x1+x2
1
2
a(
x
2
2
-
x
2
1
)+b(x2-x1)>
2(x2-x1)
x1+x2
1
2
a
x
2
2
+bx2-(
1
2
a
x
2
1
+bx1)>
2(x2-x1)
x1+x2

lnx1
x1
=
1
2
ax1+b
lnx2
x2
=
1
2
ax2+b

lnx2-lnx1
2(x2-x1)
x2+x1
,即 ln
x2
x1
2(x2-x1)
x2+x1
,∴(x2+x1)ln
x2
x1
>2(x2-x1)

H(x)=(x+x1)ln
x
x1
-2(x-x1)
,x∈(x1,+∞).只需证H(x)=(x+x1)ln
x
x1
-2(x-x1)>0=H(x1)

H′(x)=ln
x
x1
+
x1
x
-1
,令 G(x)=ln
x
x1
+
x1
x
-1
,则 G′(x)=
x-x1
x2
>0
,G(x)在x∈(x1,+∞)单调递增.
G(x)>G(x1)=0,∴H′(x)>0,∴H(x)在x∈(x1,+∞)单调递增.H(x)>H(x1)=0,
H(x)=(x+x1)ln
x
x1
-2(x-x1)>0,∴(x1+x2)g(x1+x2)>2.
点评:本题考查导数在最大值、最小值问题中的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网