题目内容

(2013•四川)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.
(I)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1
(II)设(I)中的直线l交AB于点M,交AC于点N,求二面角A-A1M-N的余弦值.
分析:(I)在平面ABC内过点P作直线l∥BC,根据线面平行的判定定理得直线l∥平面A1BC.由等腰三角形“三线合一”得到AD⊥BC,从而得到AD⊥l,结合AA1⊥l且AD、AA1是平面ADD1A1内的相交直线,证出直线l⊥平面ADD1A1
(II)连接A1P,过点A作AE⊥A1P于E,过E点作EF⊥A1M于F,连接AF.根据面面垂直判定定理,证出平面A1MN⊥平面A1AE,
从而得到AE⊥平面A1MN,结合EF⊥A1M,由三垂线定理得AF⊥A1M,可得∠AFE就是二面角A-A1M-N的平面角.设AA1=1,分别在Rt△A1AP中和△AEF中算出AE、AF的长,在Rt△AEF中,根据三角函数的定义算出sin∠AFE的值,结合同角三角函数的平方关系算出cos∠AFE的值,从而得出二面角A-A1M-N的余弦值.
解答:解:(I)在平面ABC内,过点P作直线l∥BC
∵直线l?平面A1BC,BC?平面A1BC,
∴直线l∥平面A1BC,
∵△ABC中,AB=AC,D是BC的中点,
∴AD⊥BC,结合l∥BC得AD⊥l
∵AA1⊥平面ABC,l?平面ABC,∴AA1⊥l
∵AD、AA1是平面ADD1A1内的相交直线
∴直线l⊥平面ADD1A1
(II)连接A1P,过点A作AE⊥A1P于E,过E点作EF⊥A1M于F,连接AF
由(I)知MN⊥平面A1AE,结合MN?平面A1MN得平面A1MN⊥平面A1AE,
∵平面A1MN∩平面A1AE=A1P,AE⊥A1P,∴AE⊥平面A1MN,
∵EF⊥A1M,EF是AF在平面A1MN内的射影,
∴AF⊥A1M,可得∠AFE就是二面角A-A1M-N的平面角
设AA1=1,则由AB=AC=2AA1,∠BAC=120°,可得∠BAD=60°,AB=2且AD=1
又∵P为AD的中点,∴M是AB的中点,得AP=
1
2
,AM=1
Rt△A1AP中,A1P=
AP2+AA12
=
5
2
;Rt△A1AM中,A1M=
2

∴AE=
AP•AA1
A1P
=
5
5
,AF=
AM•AA1
A1M
=
2
2

∴Rt△AEF中,sin∠AFE=
AE
AF
=
10
5
,可得cos∠AFE=
1-sin2∠AFE
=
15
5

即二面角A-A1M-N的余弦值等于
15
5
点评:本题在直三棱柱中求证线面垂直,并求二面角的余弦值.着重考查了空间线面平行、线面垂直的判定与性质,考查了三垂线定理和面面垂直的判定与性质等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网