题目内容

设椭圆+=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.

(1)求椭圆的方程;

(2)A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.·+·=8,k的值.

 

【答案】

(1) +=1 (2) k=±

【解析】

:(1)F(-c,0),=,a=c.

过点F且与x轴垂直的直线为x=-c,

代入椭圆方程有+=1,

解得y=±,

于是=,解得b=,

a2-c2=b2,从而a=,c=1,

所以椭圆的方程为+=1.

(2)设点C(x1,y1),D(x2,y2),

F(-1,0)得直线CD的方程为y=k(x+1).

由方程组消去y,整理得(2+3k2)x2+6k2x+3k2-6=0,

x1+x2=-,x1x2=.

因为A(-,0),B(,0),

所以·+·=(x1+,y1)·(-x2,-y2)+(x2+,y2)·(-x1,-y1)=6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1)

=6-(2+2k2)x1x2-2k2(x1+x2)-2k2=6+.

由已知得6+=8,解得k=±.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网