题目内容
若函数恰有三个单调区间,则实数的取值范围为 ( )
A. B. C. D.
【答案】
C
【解析】
试题分析:由题意知,f′(x)=3ax2+6x-1,
∵f(x)恰有三个单调区间,
∴f′(x)=3ax2+6x-1=0有两个不同的实数根,
∴△=36-4×3a×(-1)>0,且a≠0,即a>-3且a≠0,即(-3,0)∪(0,+∞),故选C.
考点:本题主要考查利用导数研究函数的单调性。
点评:简单题,关键是认识到f′(x)=3ax2+6x-1=0有两个不同的实数根。易错点是忽视对二次项系数的讨论。
练习册系列答案
相关题目