题目内容
9.证明下列各式:(1)cos20°(tan40°-$\sqrt{3}$)=-tan40°;
(2)sin(α+β)-2cosαsinβ=tan(α-β)[2cosαcosβ-cos(α+β)].
分析 (1)利用三角函数的恒等变换的应用从等式的左边入手证明;
(2)利用两角和差的三角函数公式证明左边等于右边即可.
解答 证明:(1)cos20°(tan40°-$\sqrt{3}$)
=cos20°(tan40°-tan60°)
=$\frac{cos20°(sin40°cos60°-cos40°sin60°)}{cos40°cos60°}$
=$\frac{cos20°sin(40°-60°)}{\frac{1}{2}cos40°}$
=-$\frac{2sin20°cos20°}{cos40°}$
=-tan40°.
(2)∵左边=sinαcosβ+cosαsinβ-2cosαsinβ=sinαcosβ-cosαsinβ=sin(α-β),
右边=tan(α-β)[2cosαcosβ-cosαcosβ+sinαsinβ]=tan(α-β)[cosαcosβ+sinαsinβ]
=tan(α-β)cos(α-β)=sin(α-β),
∴左边=右边,得证.
点评 本题考查了三角恒等式的证明,用到了倍角公式、两角和与差的三角函数公式以及特殊角的三角函数值的应用,属于基础题.
练习册系列答案
相关题目
19.已知p:$\left\{\begin{array}{l}{lg|x|≤1}\\{{2}^{x+2}≥1}\end{array}\right.$,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围( )
A. | (-∞,9] | B. | [9,+∞) | C. | (-∞,3] | D. | [3,+∞) |