题目内容
若![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191350253320483/SYS201310241913502533204011_ST/0.png)
【答案】分析:根据
的展开式的通项公式为 Tr+1=Cnr
,令
=3,n=
,r=0,1,2,3,…n,故最小的n=
=7.
解答:解:
的展开式的通项公式为 Tr+1=Cnr
a-r=Cnr
,
令
=3,n=
,∴9+5r 为偶数,r=0,1,2,3,…n,
故最小的n=
=7,
故答案为7.
点评:本题考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,得到 n=
,是解题的关键.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191350253320483/SYS201310241913502533204011_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191350253320483/SYS201310241913502533204011_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191350253320483/SYS201310241913502533204011_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191350253320483/SYS201310241913502533204011_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191350253320483/SYS201310241913502533204011_DA/4.png)
解答:解:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191350253320483/SYS201310241913502533204011_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191350253320483/SYS201310241913502533204011_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191350253320483/SYS201310241913502533204011_DA/7.png)
令
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191350253320483/SYS201310241913502533204011_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191350253320483/SYS201310241913502533204011_DA/9.png)
故最小的n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191350253320483/SYS201310241913502533204011_DA/10.png)
故答案为7.
点评:本题考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,得到 n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191350253320483/SYS201310241913502533204011_DA/11.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目