题目内容
已知向量![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_ST/2.png)
(Ⅰ) 求函数f(x)的最小正周期;
(Ⅱ) 已知△ABC的三内角A、B、C的对边分别为a、b、c,且a=3,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_ST/3.png)
【答案】分析:(Ⅰ)利用两角和差的正弦公式化简函数f(x)的解析式为sin(2x-
),由此求得函数f(x)的最小正周期.
(Ⅱ) 已知△ABC中,由
(A为锐角),求得sinA=
,可得 A=
.由正弦定理可得b=2c,根据 a=3,再由余弦定理求出c、b的值.
解答:解:(Ⅰ)
=
sinxcosx-cos2x+
=
-
=sin(2x-
),故函数f(x)的最小正周期为π.
(Ⅱ) 已知△ABC中,
(A为锐角),∴sinA=
,∴A=
.
∵2sinC=sinB,∴由正弦定理可得b=2c,
∵a=3,再由余弦定理可得 9=b2+c2-2bc•cos
.
解得 b=2
,c=
.
点评:本题主要考查两个向量的数量积公式,两角和差的正弦公式、正弦定理、余弦定理的应用,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/0.png)
(Ⅱ) 已知△ABC中,由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/3.png)
解答:解:(Ⅰ)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/9.png)
(Ⅱ) 已知△ABC中,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/12.png)
∵2sinC=sinB,∴由正弦定理可得b=2c,
∵a=3,再由余弦定理可得 9=b2+c2-2bc•cos
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/13.png)
解得 b=2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191207225423063/SYS201310241912072254230015_DA/15.png)
点评:本题主要考查两个向量的数量积公式,两角和差的正弦公式、正弦定理、余弦定理的应用,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目