题目内容
在四棱锥,平面,,,,.
(1)求证:平面平面;
(2)当点到平面的距离为时,求二面角的余弦值;
(3)当为何值时,点在平面内的射影恰好是的重心.
(1)连接交于,易知,而面,
,又面,又面,
平面平面(4分)
(2)由面得,又,面
又面面面(5分)
过作于面,是点到平面的距离(6分)故(8分)所以
作于,连接,,为所求
在,
(3)连接,则重心在上,且,连接(9分)
已知面,所以(10分),
由可得,解得
解析
练习册系列答案
相关题目
题目内容
在四棱锥,平面,,,,.
(1)求证:平面平面;
(2)当点到平面的距离为时,求二面角的余弦值;
(3)当为何值时,点在平面内的射影恰好是的重心.
(1)连接交于,易知,而面,
,又面,又面,
平面平面(4分)
(2)由面得,又,面
又面面面(5分)
过作于面,是点到平面的距离(6分)故(8分)所以
作于,连接,,为所求
在,
(3)连接,则重心在上,且,连接(9分)
已知面,所以(10分),
由可得,解得
解析