题目内容

已知函数f(x)对于任意m,n∈R,都有f(m+n)=f(m)+f(n)-1,并且当x>0时f(x)>1.
(1)求证:函数f(x)在R上为增函数;
(2)若f(3)=4,解不等式f(a2+a-5)<2.
分析:(1)证明:设x1,x2∈R,且x1<x2,则x2-x1>0,则f(x2-x1)>1,函数f(x)对于任意m,n∈R,都有f(m+n)=f(m)+f(n)-1成立,令m=n=0,有f(0)=1,
再令m=x,n=-x,结合条件得到f(x2)-f(x1)>0,即f(x2)>f(x1),即可求得结果;
(2)f(a2+a-5)<2,即为f(a2+a-5)<f(1),由(1)知,函数f(x)在R上为增函数,a2+a-5<1,解此不等式即得.
解答:解:(1)证明:设x1,x2∈R,且x1<x2,则x2-x1>0,则f(x2-x1)>1
∵函数f(x)对于任意m,n∈R,都有f(m+n)=f(m)+f(n)-1成立
∴令m=n=0,有f(0+0)=f(0)+f(0)-1,即f(0)=1,
再令m=x,n=-x,则有f(x-x)=f(x)+f(-x)-1,即f(0)=f(x)+f(-x)-1,
∴f(-x)=2-f(x),
∴f(-x1)=2-f(x1
而f(x2-x1)=f(x2)+f(-x1)-1=f(x2)+2-f(x1)-1>1,
即f(x2)-f(x1)>0,即f(x2)>f(x1),
∴函数f(x)在R上为增函数;
(2)∵f(3)=f(1+2)=f(1)+f(2)-1=f(1)+f(1)+f(1)-2=3f(1)-2=4
∴f(1)=2.
∴f(a2+a-5)<2,即为f(a2+a-5)<f(1),
由(1)知,函数f(x)在R上为增函数,a2+a-5<1,即a2+a-6<0,
∴-3<a<2
∴不等式f(a2+a-5)<2的解集是{a|-3<a<2}
点评:本题考查抽象函数的有关问题,其中赋值法是常用的方法,考查函数单调性的判断与证明,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网