题目内容
已知f(x)=ex-e-x,g(x)=ex+e-x,其中e=2.718….
(1)求[f(x)]2-[g(x)]2的值;
(2)设f(x)•f(y)=4,g(x)•g(y)=8,求
的值.
(1)求[f(x)]2-[g(x)]2的值;
(2)设f(x)•f(y)=4,g(x)•g(y)=8,求
g(x+y) | g(x-y) |
分析:(1)利用平方差公式,代入计算可得结论;
(2)利用f(x)•f(y)=4,g(x)•g(y)=8,可得
,解得g(x+y)=6,g(x-y)=2,即可得到结论.
(2)利用f(x)•f(y)=4,g(x)•g(y)=8,可得
|
解答:解:(1)[f(x)]2-[g(x)]2=[f(x)+g(x)]•[f(x)-g(x)]=2ex•(-2e-x)=-4e0=-4.
(2)f(x)•f(y)=(ex-e-x)•(ey-e-y)
=ex+y+e-(x+y)-ex-y-e-(x-y)
=g(x+y)-g(x-y)=4,①
g(x)•g(y)=(ex+e-x)(ey+e-y)
=ex+y+e-(x+y)+ex-y+e-(x-y)
=g(x+y)+g(x-y)=8.②
联立①②得
解得g(x+y)=6,g(x-y)=2,
所以
=3.
(2)f(x)•f(y)=(ex-e-x)•(ey-e-y)
=ex+y+e-(x+y)-ex-y-e-(x-y)
=g(x+y)-g(x-y)=4,①
g(x)•g(y)=(ex+e-x)(ey+e-y)
=ex+y+e-(x+y)+ex-y+e-(x-y)
=g(x+y)+g(x-y)=8.②
联立①②得
|
解得g(x+y)=6,g(x-y)=2,
所以
g(x+y) |
g(x-y) |
点评:本题考查函数与方程的综合运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目