题目内容

(06年安徽卷)(12分)

如图,P是边长为1的正六边形ABCDEF所在平面外一点,,P在平面ABC内的射影为BF的中点O。

(Ⅰ)证明

(Ⅱ)求面与面所成二面角的大小。

解析:(Ⅰ)在正六边形ABCDEF中,为等腰三角形,

∵P在平面ABC内的射影为O,∴PO⊥平面ABF,∴AO为PA在平面ABF内的射影;∵O为BF中点,∴AO⊥BF,∴PA⊥BF。

(Ⅱ)∵PO⊥平面ABF,∴平面PBF⊥平面ABC;而O为BF中点,ABCDEF是正六边形,∴A、O、D共线,且直线AD⊥BF,则AD⊥平面PBF;又∵正六边形ABCDEF的边长为1,∴

过O在平面POB内作OH⊥PB于H,连AH、DH,则AH⊥PB,DH⊥PB,所以为所求二面角平面角。

中,OH==

中,

(Ⅱ)以O为坐标原点,建立空间直角坐标系,P(0,0,1),A(0,,0),B(,0,0),D(0,2,0),∴

设平面PAB的法向量为,则,得

设平面PDB的法向量为,则,得

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网