题目内容
(海南宁夏卷文21)设函数,曲线在点处的切线方程为
。
(1)求的解析式;
(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值。
【试题解析】1)方程可化为,当时,;
又,于是,解得,故
(2)设为曲线上任一点,由知曲线在点处的切线方程为
,即
令,得,从而得切线与直线的交点坐标为;
令,得,从而得切线与直线的交点坐标为;
所以点处的切线与直线所围成的三角形面积为;
故曲线上任一点处的切线与直线所围成的三角形面积为定值,此定值为6;
练习册系列答案
相关题目