ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf(x)=
£¨1£©ÊÔÇóf(
)+f(
)(n¡ÊN*)µÄÖµ£»
£¨2£©ÈôÊýÁÐ{an}Âú×ãan=f£¨0£©+f(
)+f(
)+¡+f(
)+f£¨1£©£¨n¡ÊN*£©£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÈôÊýÁÐ{bn}Âú×ãbn=2n+1•an£¬SnÊÇÊýÁÐ{bn}Ç°nÏîµÄºÍ£¬ÊÇ·ñ´æÔÚÕýʵÊýk£¬Ê¹²»µÈʽknSn£¾4bn¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢£¿Èô´æÔÚÖ¸³ökµÄÈ¡Öµ·¶Î§£¬²¢Ö¤Ã÷£»Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®
4x |
4x+2 |
£¨1£©ÊÔÇóf(
1 |
n |
n-1 |
n |
£¨2£©ÈôÊýÁÐ{an}Âú×ãan=f£¨0£©+f(
1 |
n |
2 |
n |
n-1 |
n |
£¨3£©ÈôÊýÁÐ{bn}Âú×ãbn=2n+1•an£¬SnÊÇÊýÁÐ{bn}Ç°nÏîµÄºÍ£¬ÊÇ·ñ´æÔÚÕýʵÊýk£¬Ê¹²»µÈʽknSn£¾4bn¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢£¿Èô´æÔÚÖ¸³ökµÄÈ¡Öµ·¶Î§£¬²¢Ö¤Ã÷£»Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉf£¨x£©+f£¨1-x£©=
+
=
+
=1£¬Äܵõ½f£¨
£©+f£¨
£©=1£®Óɴ˹æÂÉÇóÖµ¼´¿É
£¨2£©ÓÉan=f£¨0£©+f(
)+f(
)+¡+f(
)+f£¨1£©£¨n¡ÊN*£©£¬Öªan=f(1)+f(
)+f(
)+¡+f£¨
£©+f£¨0£©£¨n¡ÊN*£©£¬Óɵ¹ÐòÏà¼Ó·¨Äܵõ½an=
£®
£¨3£©ÓÉbn=2n+1•an£¬Öªbn=(n+1)•2n£¬ÓÉSn=2•21+3•22+4•23+¡+£¨n+1£©•2n£¬ÀûÓôíλÏà¼õ·¨ÄÜÇó³öSn=n•2n+1£¬ÒªÊ¹µÃ²»µÈʽknSn£¾4bnºã³ÉÁ¢£¬¼´kn2-2n-2£¾0¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢£¬ÓÉ´ËÄܹ»Ö¤Ã÷µ±k£¾4ʱ£¬²»µÈʽknSn£¾bn¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢£®
4x |
4x+2 |
41-x |
41-x+2 |
4x |
4x+2 |
4 |
4+2•4x |
1 |
n |
n-1 |
n |
£¨2£©ÓÉan=f£¨0£©+f(
1 |
n |
2 |
n |
n-1 |
n |
n-1 |
n |
n-2 |
n |
1 |
n |
n+1 |
2 |
£¨3£©ÓÉbn=2n+1•an£¬Öªbn=(n+1)•2n£¬ÓÉSn=2•21+3•22+4•23+¡+£¨n+1£©•2n£¬ÀûÓôíλÏà¼õ·¨ÄÜÇó³öSn=n•2n+1£¬ÒªÊ¹µÃ²»µÈʽknSn£¾4bnºã³ÉÁ¢£¬¼´kn2-2n-2£¾0¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢£¬ÓÉ´ËÄܹ»Ö¤Ã÷µ±k£¾4ʱ£¬²»µÈʽknSn£¾bn¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢£®
½â´ð£º£¨±¾Ð¡ÌâÂú·Ö16·Ö£©
½â£º£¨1£©¡ßf£¨x£©+f£¨1-x£©=
+
=
+
=1
¡àf£¨
£©+f£¨
£©=1£®£¨5·Ö£©
£¨2£©¡ßan=f£¨0£©+f(
)+f(
)+¡+f(
)+f£¨1£©£¨n¡ÊN*£©£¬¢Ù
¡àan=f(1)+f(
)+f(
)+¡+f£¨
£©+f£¨0£©£¨n¡ÊN*£©£¬¢Ú
ÓÉ£¨1£©£¬Öª f£¨
£©+f£¨
£©=1£¬
¡à¢Ù+¢Ú£¬µÃ2an=n+1£¬
¡àan=
£®£¨10·Ö£©
£¨3£©¡ßbn=2n+1•an£¬¡àbn=(n+1)•2n£¬
¡àSn=2•21+3•22+4•23+¡+£¨n+1£©•2n£¬¢Ù
¡à2Sn=2•22+3•23+4•24+¡+n•2n+£¨n+1£©•2n+1£¬¢Ú
¢Ù-¢ÚµÃ-Sn=4+22+23+¡+2n-(n+1)•2n+1£¬
¼´Sn=n•2n+1£¬£¨12·Ö£©
ҪʹµÃ²»µÈʽknSn£¾4bnºã³ÉÁ¢£¬¼´kn2-2n-2£¾0¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢£¬
n=1ʱ£¬k-2-2£¾0³ÉÁ¢£¬¼´k£¾4£®
Éèg£¨n£©=kn2-2n-2£¬
µ±k£¾4ʱ£¬ÓÉÓÚ¶Ô³ÆÖáÖ±Ïßn=
£¼1£¬ÇÒ g£¨1£©=k-2-2£¾0£¬¶øº¯Êýf£¨x£©ÔÚ[1£¬+¡Þ£© ÊÇÔöº¯Êý£¬
¡à²»µÈʽknSn£¾bnºã³ÉÁ¢£¬
¼´µ±k£¾4ʱ£¬²»µÈʽknSn£¾bn¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢ ¡£¨16·Ö£©
½â£º£¨1£©¡ßf£¨x£©+f£¨1-x£©=
4x |
4x+2 |
41-x |
41-x+2 |
4x |
4x+2 |
4 |
4+2•4x |
¡àf£¨
1 |
n |
n-1 |
n |
£¨2£©¡ßan=f£¨0£©+f(
1 |
n |
2 |
n |
n-1 |
n |
¡àan=f(1)+f(
n-1 |
n |
n-2 |
n |
1 |
n |
ÓÉ£¨1£©£¬Öª f£¨
1 |
n |
n-1 |
n |
¡à¢Ù+¢Ú£¬µÃ2an=n+1£¬
¡àan=
n+1 |
2 |
£¨3£©¡ßbn=2n+1•an£¬¡àbn=(n+1)•2n£¬
¡àSn=2•21+3•22+4•23+¡+£¨n+1£©•2n£¬¢Ù
¡à2Sn=2•22+3•23+4•24+¡+n•2n+£¨n+1£©•2n+1£¬¢Ú
¢Ù-¢ÚµÃ-Sn=4+22+23+¡+2n-(n+1)•2n+1£¬
¼´Sn=n•2n+1£¬£¨12·Ö£©
ҪʹµÃ²»µÈʽknSn£¾4bnºã³ÉÁ¢£¬¼´kn2-2n-2£¾0¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢£¬
n=1ʱ£¬k-2-2£¾0³ÉÁ¢£¬¼´k£¾4£®
Éèg£¨n£©=kn2-2n-2£¬
µ±k£¾4ʱ£¬ÓÉÓÚ¶Ô³ÆÖáÖ±Ïßn=
1 |
k |
¡à²»µÈʽknSn£¾bnºã³ÉÁ¢£¬
¼´µ±k£¾4ʱ£¬²»µÈʽknSn£¾bn¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢ ¡£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁС¢²»µÈʽ֪ʶ£¬¿¼²é»¯¹éÓëת»¯¡¢·ÖÀàÓëÕûºÏµÄÊýѧ˼Ï룬ÅàÑøѧÉúµÄ³éÏó¸ÅÀ¨ÄÜÁ¦¡¢ÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦ºÍ´´ÐÂÒâʶ£®½âÌâʱҪעÒâµ¹ÐòÏà¼Ó·¨¡¢´íλÏà¼õ·¨µÄÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýf(x)=
£¬ÔòËüÊÇ£¨¡¡¡¡£©
| ||
|x-3|-3 |
A¡¢Æ溯Êý | B¡¢Å¼º¯Êý |
C¡¢¼ÈÆæÓÖżº¯Êý | D¡¢·ÇÆæ·Çżº¯Êý |