题目内容

若函数处有极值,则函数的图象在处的切线的斜率为                .

 

【答案】

-5

【解析】

试题分析:∵函数f(x)=(x-2)(x2+c)在x=1处有极值,∴f′(x)=(x2+c)+(x-2)×2x,∵f′(2)=0,∴(c+4)+(2-2)×2=0,∴c=-4,∴f′(x)=(x2-4)+(x-2)×2x,∴函数f(x)的图象x=1处的切线的斜率为f′(1)=(1-4)+(1-2)×2=-5.

考点:1.函数在某点取得极值的条件;2.利用导数研究曲线上某点切线方程

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网