题目内容

已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项.现给出以下四个命题:
①数列0,1,3具有性质P;
②数列0,2,4,6具有性质P;
③若数列A具有性质P,则a1=0;
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2
其中真命题有   
【答案】分析:本题是一种重新定义问题,要我们理解题目中所给的条件,解决后面的问题,把后面的问题挨个验证,发现正确结论写到横线上.
解答:解:①中取1和3两个元素验证,发现不正确;
②显然满足题意;
③若数列A具有性质P,则a1=0,所以对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项.
④数列是等差数列,经验证满足题意;
故答案为:②③④.
点评:本题是一道新型的探索性问题,认真理解题目所给的条件后解决问题,通过解决探索性问题,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网