题目内容
设数列{an}的各项都是正数,且对任意n∈N*都有a13+a23+a33+…+an3=sn2其中sn为数列{an}的前n项和.
(1)求证:an2=2sn-an;
(2)求数列{an}的通项公式.
(1)求证:an2=2sn-an;
(2)求数列{an}的通项公式.
分析:(1)令n=1代入a13+a23+a33+…+an3=Sn2,可得a1的值,然后推出Sn-12的表达式,与Sn2相减可得an2=2Sn-an,从而求证;
(2)由(1)得an2=2Sn-an利用递推公式,得an-12的表达式,从而可得数列an是首项为1,公差为1的等差数列.
(2)由(1)得an2=2Sn-an利用递推公式,得an-12的表达式,从而可得数列an是首项为1,公差为1的等差数列.
解答:解:(1)由已知得,当n=1时,a13=S12=a12,
又∵an>0,∴a1=1
当n≥2时,a13+a23++an3=Sn2①
a13+a23++an-13=Sn-12②
由①-②得,an3=Sn2-Sn-12=(Sn-Sn-1)(Sn+Sn-1)=an(Sn+Sn-1)
∴an2=Sn+Sn-1=2Sn-an(n≥2)
显然当n=1时,a1=1适合上式.
故an2=2Sn-an(n∈N*)
(2)由(1)得,an2=2Sn-an③
an-12=2Sn-1-an-1(n≥2)④
由③-④得,an2-an-12=2Sn-2Sn-1-an+an-1=an+an-1
∵an+an-1>0∴an-an-1=1(n≥2)
故数列an是首项为1,公差为1的等差数列.
∴an=n(n∈N*)
又∵an>0,∴a1=1
当n≥2时,a13+a23++an3=Sn2①
a13+a23++an-13=Sn-12②
由①-②得,an3=Sn2-Sn-12=(Sn-Sn-1)(Sn+Sn-1)=an(Sn+Sn-1)
∴an2=Sn+Sn-1=2Sn-an(n≥2)
显然当n=1时,a1=1适合上式.
故an2=2Sn-an(n∈N*)
(2)由(1)得,an2=2Sn-an③
an-12=2Sn-1-an-1(n≥2)④
由③-④得,an2-an-12=2Sn-2Sn-1-an+an-1=an+an-1
∵an+an-1>0∴an-an-1=1(n≥2)
故数列an是首项为1,公差为1的等差数列.
∴an=n(n∈N*)
点评:本题主要考查了等比数列的性质及递推公式的应用,难度比较大,此题综合性较强,属于中档题.
练习册系列答案
相关题目