题目内容

经过抛物线y2=2px的焦点F作倾角为θ的直线,若该直线与抛物线交于P1、P2两点.
(1)求|P1P2|;
(2)当θ变化时,求|P1P2|的最小值.
分析:(1)根据题意可求得抛物线的焦点,进而可求得直线的方程,设P1(x1,y1),P2(x2,y2)把直线与抛物线方程联立消去x,根据韦达定理求得x1+x2,然后根据抛物线定义可求得|P1P2|=x1+x2+p,答案可得.
(2)根据(1)中关于|P1P2|的表达式化简整理后可知当θ=
π
2
时,由最小值.
解答:解:(1)抛物线焦点坐标为(
p
2
,0),
当θ=90°时,将x=
p
2
代入,可解得P1、P2两点的纵坐标分别为-p,p,此时有|P1P2|=2p;
当θ≠90°时,则直线方程为y=tanθ(x-
p
2
),P1(x1,y1),P2(x2,y2
代入抛物线方程得tan2θx2-(tan2θp+2p)x+
p2
4
=0
则x1+x2=
tan2θp+2p
tan2θ

根据抛物线定义可知|P1P2|=x1+
p
2
x2+
p
2
=x1+x2+p=
2tan2θp+2p
tan2θ
=
2p
sin 2θ

又θ=90°时,2p=
2p
sin 2θ

∴|P1P2|=
2p
sin 2θ

(2)由(1)可知|P1P2|=
2p
sin 2θ

∵-1≤sinθ≤1,
2p
sin 2θ
≥2p,当θ=90°时等号成立
即|P1P2|的最小值为2p.
点评:本题主要考查了直线与圆锥曲线的综合问题.涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网